mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 07:16:44 +02:00
104 lines
3.7 KiB
Python
104 lines
3.7 KiB
Python
import pickle
|
|
import warnings
|
|
from typing import Union
|
|
from os import PathLike
|
|
from pathlib import Path
|
|
import time
|
|
import pandas as pd
|
|
|
|
from stable_baselines3.common.callbacks import CallbackList
|
|
|
|
from environments.factory.simple_factory import DirtProperties, SimpleFactory
|
|
from environments.logging.monitor import MonitorCallback
|
|
from environments.logging.plotting import prepare_plot
|
|
from environments.logging.training import TraningMonitor
|
|
|
|
warnings.filterwarnings('ignore', category=FutureWarning)
|
|
warnings.filterwarnings('ignore', category=UserWarning)
|
|
|
|
|
|
def combine_runs(run_path: Union[str, PathLike]):
|
|
run_path = Path(run_path)
|
|
df_list = list()
|
|
for run, monitor_file in enumerate(run_path.rglob('monitor_*.pick')):
|
|
with monitor_file.open('rb') as f:
|
|
monitor_list = pickle.load(f)
|
|
|
|
for m_idx in range(len(monitor_list)):
|
|
monitor_list[m_idx]['episode'] = str(m_idx)
|
|
monitor_list[m_idx]['run'] = str(run)
|
|
|
|
df = pd.concat(monitor_list, ignore_index=True)
|
|
df['train_step'] = range(df.shape[0])
|
|
|
|
df = df.fillna(0)
|
|
|
|
#for column in list(df.columns):
|
|
# if column not in ['episode', 'run', 'step', 'train_step']:
|
|
# if 'clean' in column or '_vs_' in column:
|
|
# df[f'{column}_sum_roll'] = df[column].rolling(window=50, min_periods=1).sum()
|
|
# else:
|
|
# df[f'{column}_mean_roll'] = df[column].rolling(window=50, min_periods=1).mean()
|
|
|
|
df_list.append(df)
|
|
df = pd.concat(df_list, ignore_index=True)
|
|
df = df.fillna(0)
|
|
|
|
df_group = df.groupby(['episode', 'run']).aggregate({col: 'mean' if col in ['dirt_amount',
|
|
'dirty_tiles'] else 'sum'
|
|
for col in df.columns if col not in ['episode', 'run']
|
|
}).reset_index()
|
|
|
|
import seaborn as sns
|
|
from matplotlib import pyplot as plt
|
|
df_melted = df_group.melt(id_vars=['train_step', 'run'],
|
|
value_vars=['agent_0_vs_level', 'dirt_amount',
|
|
'dirty_tiles', 'step_reward',
|
|
'failed_cleanup_attempt',
|
|
'dirt_cleaned'], var_name="Variable",
|
|
value_name="Score")
|
|
|
|
sns.lineplot(data=df_melted, x='train_step', y='Score', hue='Variable', ci='sd')
|
|
plt.show()
|
|
|
|
prepare_plot(filepath=run_path / f'{run_path.name}_monitor_out_combined',
|
|
results_df=df.filter(regex=(".+_roll|(step)$")), tag='monitor')
|
|
print('Plotting done.')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# combine_runs('debug_out/PPO_1622113195')
|
|
# exit()
|
|
|
|
from stable_baselines3 import DQN, PPO
|
|
|
|
dirt_props = DirtProperties()
|
|
time_stamp = int(time.time())
|
|
|
|
out_path = None
|
|
|
|
for seed in range(5):
|
|
|
|
env = SimpleFactory(n_agents=1, dirt_properties=dirt_props)
|
|
model = PPO("MlpPolicy", env, verbose=1, ent_coef=0.0, seed=seed)
|
|
|
|
out_path = Path('../debug_out') / f'{model.__class__.__name__}_{time_stamp}'
|
|
|
|
identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}'
|
|
out_path /= identifier
|
|
|
|
callbacks = CallbackList(
|
|
[TraningMonitor(out_path / f'train_logging_{identifier}.csv'),
|
|
MonitorCallback(env, filepath=out_path / f'monitor_{identifier}.pick', plotting=False)]
|
|
)
|
|
|
|
model.learn(total_timesteps=int(5e5), callback=callbacks)
|
|
|
|
save_path = out_path / f'model_{identifier}.zip'
|
|
save_path.parent.mkdir(parents=True, exist_ok=True)
|
|
model.save(save_path)
|
|
|
|
if out_path:
|
|
combine_runs(out_path)
|