mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 07:16:44 +02:00
Merge remote-tracking branch 'origin/main'
This commit is contained in:
commit
7b4060a042
@ -1,4 +1,4 @@
|
||||
from typing import Tuple, NamedTuple
|
||||
from typing import NamedTuple, Union
|
||||
from collections import namedtuple, deque
|
||||
import numpy as np
|
||||
import random
|
||||
@ -6,16 +6,17 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from stable_baselines3.common.utils import polyak_update
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
import copy
|
||||
|
||||
|
||||
class Experience(NamedTuple):
|
||||
observation: np.ndarray
|
||||
observation: np.ndarray
|
||||
next_observation: np.ndarray
|
||||
action: int
|
||||
reward: float
|
||||
done : bool
|
||||
priority: float = 1
|
||||
info : dict = {}
|
||||
action: np.ndarray
|
||||
reward: Union[float, np.ndarray]
|
||||
done : Union[bool, np.ndarray]
|
||||
priority: np.ndarray = 1
|
||||
|
||||
|
||||
class BaseBuffer:
|
||||
@ -31,7 +32,12 @@ class BaseBuffer:
|
||||
|
||||
def sample(self, k):
|
||||
sample = random.choices(self.experience, k=k)
|
||||
return sample
|
||||
observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float()
|
||||
next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float()
|
||||
actions = torch.tensor([e.action for e in sample]).long()
|
||||
rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1)
|
||||
dones = torch.tensor([e.done for e in sample]).float().view(-1, 1)
|
||||
return Experience(observations, next_observations, actions, rewards, dones)
|
||||
|
||||
|
||||
class PERBuffer(BaseBuffer):
|
||||
@ -50,16 +56,16 @@ class BaseDQN(nn.Module):
|
||||
def __init__(self):
|
||||
super(BaseDQN, self).__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(3*5*5, 64),
|
||||
nn.Linear(3*5*5, 128),
|
||||
nn.ReLU(),
|
||||
nn.Linear(64, 64),
|
||||
nn.Linear(128, 128),
|
||||
nn.ReLU(),
|
||||
nn.Linear(64, 9)
|
||||
nn.Linear(128, 9)
|
||||
)
|
||||
|
||||
def act(self, x):
|
||||
def act(self, x) -> np.ndarray:
|
||||
with torch.no_grad():
|
||||
action = self.net(x.view(x.shape[0], -1)).argmax(-1).item()
|
||||
action = self.net(x.view(x.shape[0], -1)).max(-1)[1].numpy()
|
||||
return action
|
||||
|
||||
def forward(self, x):
|
||||
@ -70,17 +76,17 @@ class BaseDQN(nn.Module):
|
||||
|
||||
|
||||
class BaseQlearner:
|
||||
def __init__(self, q_net, target_q_net, env, buffer, target_update, warmup, eps_end,
|
||||
def __init__(self, q_net, target_q_net, env, buffer, target_update, eps_end, n_agents=1,
|
||||
gamma=0.99, train_every_n_steps=4, n_grad_steps=1,
|
||||
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
|
||||
self.q_net = q_net
|
||||
self.target_q_net = target_q_net
|
||||
self.target_q_net.load_state_dict(self.q_net.state_dict())
|
||||
#self.q_net.apply(self.weights_init)
|
||||
polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1)
|
||||
self.target_q_net.eval()
|
||||
self.env = env
|
||||
self.buffer = buffer
|
||||
self.target_update = target_update
|
||||
self.warmup = warmup
|
||||
self.eps = 1.
|
||||
self.eps_end = eps_end
|
||||
self.exploration_fraction = exploration_fraction
|
||||
@ -90,73 +96,97 @@ class BaseQlearner:
|
||||
self.n_grad_steps = n_grad_steps
|
||||
self.lr = lr
|
||||
self.reg_weight = reg_weight
|
||||
self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr)
|
||||
self.n_agents = n_agents
|
||||
self.device = 'cpu'
|
||||
self.running_reward = deque(maxlen=10)
|
||||
self.running_loss = deque(maxlen=10)
|
||||
self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr)
|
||||
self.running_reward = deque(maxlen=30)
|
||||
self.running_loss = deque(maxlen=30)
|
||||
|
||||
def to(self, device):
|
||||
self.device = device
|
||||
return self
|
||||
|
||||
@staticmethod
|
||||
def weights_init(module, activation='relu'):
|
||||
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||||
nn.init.xavier_normal_(module.weight, gain=torch.nn.init.calculate_gain(activation))
|
||||
if module.bias is not None:
|
||||
module.bias.data.fill_(0.0)
|
||||
|
||||
def anneal_eps(self, step, n_steps):
|
||||
fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0)
|
||||
eps = 1 + fraction * (self.eps_end - 1)
|
||||
return eps
|
||||
self.eps = 1 + fraction * (self.eps_end - 1)
|
||||
|
||||
def get_action(self, obs) -> Union[int, np.ndarray]:
|
||||
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
|
||||
if np.random.rand() > self.eps:
|
||||
action = self.q_net.act(o.float())
|
||||
else:
|
||||
action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)])
|
||||
return action
|
||||
|
||||
def learn(self, n_steps):
|
||||
step, eps = 0, 1
|
||||
step = 0
|
||||
while step < n_steps:
|
||||
obs, done = self.env.reset(), False
|
||||
total_reward = 0
|
||||
while not done:
|
||||
|
||||
action = self.q_net.act(torch.from_numpy(obs).unsqueeze(0).float()) \
|
||||
if np.random.rand() > eps else env.action_space.sample()
|
||||
action = self.get_action(obs)
|
||||
|
||||
next_obs, reward, done, info = env.step(action)
|
||||
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
|
||||
|
||||
experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done) # do we really need to copy?
|
||||
experience = Experience(observation=obs.copy(), next_observation=next_obs.copy(),
|
||||
action=action, reward=reward, done=done) # do we really need to copy?
|
||||
self.buffer.add(experience)
|
||||
# end of step routine
|
||||
obs = next_obs
|
||||
step += 1
|
||||
total_reward += reward
|
||||
eps = self.anneal_eps(step, n_steps)
|
||||
self.anneal_eps(step, n_steps)
|
||||
|
||||
if step % self.train_every_n_steps == 0:
|
||||
self.train()
|
||||
if step % self.target_update == 0:
|
||||
self.target_q_net.load_state_dict(self.q_net.state_dict())
|
||||
print('UPDATE')
|
||||
polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1.0)
|
||||
|
||||
|
||||
self.running_reward.append(total_reward)
|
||||
if step % 10 == 0:
|
||||
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward)}\t'
|
||||
f' eps: {eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss)}')
|
||||
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t'
|
||||
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}')
|
||||
|
||||
def _training_routine(self, obs, next_obs, action):
|
||||
current_q_values = self.q_net(obs)
|
||||
current_q_values = torch.gather(current_q_values, dim=1, index=action)
|
||||
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
||||
return current_q_values, next_q_values_raw
|
||||
|
||||
def train(self):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
|
||||
experience = self.buffer.sample(self.batch_size)
|
||||
#print(experience.observation.shape, experience.next_observation.shape, experience.action.shape, experience.reward.shape, experience.done.shape)
|
||||
if self.n_agents <= 1:
|
||||
pred_q, target_q_raw = self._training_routine(experience.observation, experience.next_observation, experience.action)
|
||||
else:
|
||||
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
|
||||
for agent_i in range(self.n_agents):
|
||||
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
|
||||
experience.next_observation[:, agent_i],
|
||||
experience.action[:, agent_i].unsqueeze(-1)
|
||||
)
|
||||
pred_q += q_values
|
||||
target_q_raw += next_q_values_raw
|
||||
|
||||
obs = torch.stack([torch.from_numpy(e.observation) for e in experience], 0).float()
|
||||
next_obs = torch.stack([torch.from_numpy(e.next_observation) for e in experience], 0).float()
|
||||
actions = torch.tensor([e.action for e in experience]).long()
|
||||
rewards = torch.tensor([e.reward for e in experience]).float()
|
||||
dones = torch.tensor([e.done for e in experience]).float()
|
||||
|
||||
next_q_values = self.target_q_net(next_obs).detach().max(-1)[0]
|
||||
target_q_values = rewards + (1. - dones) * self.gamma * next_q_values
|
||||
|
||||
|
||||
q_values = self.q_net(obs).gather(-1, actions.unsqueeze(0))
|
||||
|
||||
delta = q_values - target_q_values
|
||||
loss = torch.mean(self.reg_weight * q_values + torch.pow(delta, 2))
|
||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||
print(target_q)
|
||||
|
||||
# log loss
|
||||
self.running_loss.append(loss.item())
|
||||
|
||||
# Optimize the model
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
@ -164,25 +194,33 @@ class BaseQlearner:
|
||||
self.optimizer.step()
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
||||
from algorithms.reg_dqn import RegDQN
|
||||
from stable_baselines3.common.vec_env import DummyVecEnv
|
||||
|
||||
|
||||
N_AGENTS = 1
|
||||
|
||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False)
|
||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=1, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False)
|
||||
#print(env.action_space)
|
||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False)
|
||||
env = DummyVecEnv([lambda: env])
|
||||
print(env)
|
||||
from stable_baselines3.dqn import DQN
|
||||
|
||||
#dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 25000, batch_size = 64, target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025)
|
||||
#print(dqn.policy)
|
||||
#dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 64, batch_size = 64,
|
||||
# target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025,
|
||||
# train_freq=4, gradient_steps=1, reg_weight=0.05)
|
||||
#dqn.learn(100000)
|
||||
|
||||
|
||||
print(env.observation_space, env.action_space)
|
||||
dqn, target_dqn = BaseDQN(), BaseDQN()
|
||||
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=5000, warmup=25000, lr=1e-4, gamma=0.99,
|
||||
train_every_n_steps=4, eps_end=0.05, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=10000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS,
|
||||
train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64)
|
||||
learner.learn(100000)
|
||||
|
Loading…
x
Reference in New Issue
Block a user