Added code for tsp_runs + Updated eval configs so that every episode only takes a maximum number of steps

This commit is contained in:
Julian Schönberger
2024-05-10 17:38:34 +02:00
parent d0d31b964c
commit 5e9e59c843
7 changed files with 125 additions and 13 deletions

View File

@ -58,5 +58,5 @@ Rules:
# Done Conditions
#DoneOnAllDirtCleaned:
#DoneAtMaxStepsReached: # Mayne Required since door blocking will result in infinite loop
#max_steps: 1000
DoneAtMaxStepsReached:
max_steps: 50

View File

@ -58,5 +58,5 @@ Rules:
# Done Conditions
#DoneOnAllDirtCleaned:
#DoneAtMaxStepsReached: # Mayne Required since door blocking will result in infinite loop
#max_steps: 1000
DoneAtMaxStepsReached:
max_steps: 50

View File

@ -58,5 +58,5 @@ Rules:
# Done Conditions
#DoneOnAllDirtCleaned:
#DoneAtMaxStepsReached: # Mayne Required since door blocking will result in infinite loop
#max_steps: 1000
DoneAtMaxStepsReached:
max_steps: 50

View File

@ -27,7 +27,7 @@ Agents:
- DirtPiles
- Self
Positions:
- (9,1)
- (9,2)
Reiner:
Actions:
- Move4
@ -39,11 +39,11 @@ Agents:
- DirtPiles
- Self
Positions:
- (9,8) # (9, 4)
- (9,5)
Entities:
DirtPiles:
coords_or_quantity: (1, 1), (1,2), (1,3), (2,4), (2,5), (3,6), (4,7), (5,8), (6,8), (7,9), (8,9), (9,9)
coords_or_quantity: (1, 1), (4,5), (9,9)
initial_amount: 0.5 # <1 to ensure that the robot which first attempts to clean this field, can remove the dirt in one action
clean_amount: 1
dirt_spawn_r_var: 0

View File

@ -16,7 +16,7 @@ General:
Agents:
Wolfgang:
Actions:
- Move8
- Move4
- Noop
- DestAction
- DoorUse
@ -29,7 +29,7 @@ Agents:
- (3,1) # Agent spawnpoint
Sigmund:
Actions:
- Move8
- Move4
- Noop
- DestAction
- DoorUse
@ -67,6 +67,11 @@ Rules:
# Init
AssignGlobalPositions: { }
DoneAtDestinationReach:
reward_at_done: 1
# We want to give rewards only, when all targets have been reached.
condition: "all"
# Done Conditions
DoneAtMaxStepsReached:
max_steps: 100
max_steps: 50

View File

@ -16,7 +16,7 @@ class DestAction(Action):
def do(self, entity, state) -> Union[None, ActionResult]:
if destination := state[d.DESTINATION].by_pos(entity.pos):
valid = destination.do_wait_action(entity)
valid = destination[0].do_wait_action(entity)
state.print(f'{entity.name} just waited at {entity.pos}')
else:
valid = c.NOT_VALID

107
studies/tsp_runs.py Normal file
View File

@ -0,0 +1,107 @@
import os
import time
from pathlib import Path
import imageio
from tqdm import trange
from marl_factory_grid.algorithms.static.TSP_dirt_agent import TSPDirtAgent
from marl_factory_grid.algorithms.static.TSP_item_agent import TSPItemAgent
from marl_factory_grid.algorithms.static.TSP_target_agent import TSPTargetAgent
from marl_factory_grid.environment.factory import Factory
def get_dirt_quadrant_tsp_agents(emergent_phenomenon, factory):
agents = [TSPDirtAgent(factory, 0), TSPDirtAgent(factory, 1)]
if not emergent_phenomenon:
edge_costs = {}
# Add costs for horizontal edges
for i in range(1, 10):
for j in range(1, 9):
# Add costs for both traversal directions
edge_costs[f"{(i, j)}-{i, j + 1}"] = 0.55 + (i - 1) * 0.05
edge_costs[f"{i, j + 1}-{(i, j)}"] = 0.55 + (i - 1) * 0.05
# Add costs for vertical edges
for i in range(1, 9):
for j in range(1, 10):
# Add costs for both traversal directions
edge_costs[f"{(i, j)}-{i + 1, j}"] = 0.55 + (i - 1) * 0.05
edge_costs[f"{i + 1, j}-{(i, j)}"] = 0.55 + (i - 1) * 0.05
for agent in agents:
for u, v, weight in agent._position_graph.edges(data='weight'):
agent._position_graph[u][v]['weight'] = edge_costs[f"{u}-{v}"]
"""for u, v, weight in agent._position_graph.edges(data='weight'):
print(f"Edge ({u}-{v}) has weight: {weight}")"""
return agents
def get_two_rooms_one_door_modified_tsp_agents(emergent_phenomenon, factory):
agents = [TSPTargetAgent(factory, 0), TSPTargetAgent(factory, 1)]
if not emergent_phenomenon:
print(emergent_phenomenon)
for agent in agents:
agent._position_graph[(3, 1)][(3, 2)]['weight'] = 4
return agents
def run_tsp_setting(config_name, emergent_phenomenon):
# Render at each step?
render = True
# Path to config File
path = Path(f'../marl_factory_grid/configs/{config_name}.yaml')
# Create results folder
runs = os.listdir("../study_out/")
run_numbers = [int(run[7:]) for run in runs if run[:7] == "tsp_run"]
next_run_number = max(run_numbers) + 1 if run_numbers else 0
results_path = f"../study_out/tsp_run{next_run_number}"
os.mkdir(results_path)
# Env Init
factory = Factory(path)
with open(f"{results_path}/env_config.txt", "w") as txt_file:
txt_file.write(str(factory.conf))
recorder = imageio.get_writer(f'{results_path}/pygame_recording.mp4', fps=5)
for episode in trange(1):
_ = factory.reset()
done = False
if render:
factory.set_recorder(recorder)
factory.render()
factory._renderer.fps = 5
if config_name == "dirt_quadrant":
agents = get_dirt_quadrant_tsp_agents(emergent_phenomenon, factory)
elif config_name == "two_rooms_one_door_modified":
agents = get_two_rooms_one_door_modified_tsp_agents(emergent_phenomenon, factory)
else:
print("Config name does not exist. Abort...")
break
while not done:
a = [x.predict() for x in agents]
obs_type, _, _, done, info = factory.step(a)
if render:
factory.render()
if done:
print(f'Episode {episode} done...')
break
recorder.close()
def dirt_quadrant_multi_agent_tsp(emergent_phenomenon):
run_tsp_setting("dirt_quadrant", emergent_phenomenon)
def two_rooms_one_door_modified_multi_agent_tsp(emergent_phenomenon):
run_tsp_setting("two_rooms_one_door_modified", emergent_phenomenon)
if __name__ == '__main__':
dirt_quadrant_multi_agent_tsp(False)