mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	added own dqn
This commit is contained in:
		| @@ -1,4 +1,4 @@ | ||||
| from typing import Tuple, NamedTuple | ||||
| from typing import NamedTuple, Union | ||||
| from collections import namedtuple, deque | ||||
| import numpy as np | ||||
| import random | ||||
| @@ -6,16 +6,17 @@ import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from stable_baselines3.common.utils import polyak_update | ||||
| from stable_baselines3.common.buffers import ReplayBuffer | ||||
| import copy | ||||
|  | ||||
|  | ||||
| class Experience(NamedTuple): | ||||
|     observation: np.ndarray | ||||
|     observation:      np.ndarray | ||||
|     next_observation: np.ndarray | ||||
|     action:      int | ||||
|     reward:      float | ||||
|     done  :      bool | ||||
|     priority:    float = 1 | ||||
|     info  :      dict = {} | ||||
|     action:           np.ndarray | ||||
|     reward:           Union[float, np.ndarray] | ||||
|     done  :           Union[bool, np.ndarray] | ||||
|     priority:         np.ndarray = 1 | ||||
|  | ||||
|  | ||||
| class BaseBuffer: | ||||
| @@ -31,7 +32,12 @@ class BaseBuffer: | ||||
|  | ||||
|     def sample(self, k): | ||||
|         sample = random.choices(self.experience, k=k) | ||||
|         return sample | ||||
|         observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float() | ||||
|         next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float() | ||||
|         actions = torch.tensor([e.action for e in sample]).long() | ||||
|         rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1) | ||||
|         dones = torch.tensor([e.done for e in sample]).float().view(-1, 1) | ||||
|         return Experience(observations, next_observations, actions, rewards, dones) | ||||
|  | ||||
|  | ||||
| class PERBuffer(BaseBuffer): | ||||
| @@ -50,16 +56,16 @@ class BaseDQN(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         self.net = nn.Sequential( | ||||
|             nn.Linear(3*5*5, 64), | ||||
|             nn.Linear(3*5*5, 128), | ||||
|             nn.ReLU(), | ||||
|             nn.Linear(64,  64), | ||||
|             nn.Linear(128,  128), | ||||
|             nn.ReLU(), | ||||
|             nn.Linear(64, 9) | ||||
|             nn.Linear(128, 9) | ||||
|         ) | ||||
|  | ||||
|     def act(self, x): | ||||
|     def act(self, x) -> np.ndarray: | ||||
|         with torch.no_grad(): | ||||
|             action = self.net(x.view(x.shape[0], -1)).argmax(-1).item() | ||||
|             action = self.net(x.view(x.shape[0], -1)).max(-1)[1].numpy() | ||||
|         return action | ||||
|  | ||||
|     def forward(self, x): | ||||
| @@ -70,17 +76,17 @@ class BaseDQN(nn.Module): | ||||
|  | ||||
|  | ||||
| class BaseQlearner: | ||||
|     def __init__(self, q_net, target_q_net, env, buffer, target_update, warmup, eps_end, | ||||
|     def __init__(self, q_net, target_q_net, env, buffer, target_update, eps_end, n_agents=1, | ||||
|                  gamma=0.99, train_every_n_steps=4, n_grad_steps=1, | ||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0): | ||||
|         self.q_net = q_net | ||||
|         self.target_q_net = target_q_net | ||||
|         self.target_q_net.load_state_dict(self.q_net.state_dict()) | ||||
|         #self.q_net.apply(self.weights_init) | ||||
|         polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1) | ||||
|         self.target_q_net.eval() | ||||
|         self.env = env | ||||
|         self.buffer = buffer | ||||
|         self.target_update = target_update | ||||
|         self.warmup = warmup | ||||
|         self.eps = 1. | ||||
|         self.eps_end = eps_end | ||||
|         self.exploration_fraction = exploration_fraction | ||||
| @@ -90,73 +96,97 @@ class BaseQlearner: | ||||
|         self.n_grad_steps = n_grad_steps | ||||
|         self.lr = lr | ||||
|         self.reg_weight = reg_weight | ||||
|         self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr) | ||||
|         self.n_agents = n_agents | ||||
|         self.device = 'cpu' | ||||
|         self.running_reward = deque(maxlen=10) | ||||
|         self.running_loss = deque(maxlen=10) | ||||
|         self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr) | ||||
|         self.running_reward = deque(maxlen=30) | ||||
|         self.running_loss = deque(maxlen=30) | ||||
|  | ||||
|     def to(self, device): | ||||
|         self.device = device | ||||
|         return self | ||||
|  | ||||
|     @staticmethod | ||||
|     def weights_init(module, activation='relu'): | ||||
|         if isinstance(module, (nn.Linear, nn.Conv2d)): | ||||
|             nn.init.xavier_normal_(module.weight, gain=torch.nn.init.calculate_gain(activation)) | ||||
|             if module.bias is not None: | ||||
|                 module.bias.data.fill_(0.0) | ||||
|  | ||||
|     def anneal_eps(self, step, n_steps): | ||||
|         fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0) | ||||
|         eps = 1 + fraction * (self.eps_end - 1) | ||||
|         return eps | ||||
|         self.eps = 1 + fraction * (self.eps_end - 1) | ||||
|  | ||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: | ||||
|         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) | ||||
|         if np.random.rand() > self.eps: | ||||
|             action = self.q_net.act(o.float()) | ||||
|         else: | ||||
|             action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)]) | ||||
|         return action | ||||
|  | ||||
|     def learn(self, n_steps): | ||||
|         step, eps = 0, 1 | ||||
|         step = 0 | ||||
|         while step < n_steps: | ||||
|             obs, done = self.env.reset(), False | ||||
|             total_reward = 0 | ||||
|             while not done: | ||||
|  | ||||
|                 action = self.q_net.act(torch.from_numpy(obs).unsqueeze(0).float()) \ | ||||
|                     if np.random.rand() > eps else env.action_space.sample() | ||||
|                 action = self.get_action(obs) | ||||
|  | ||||
|                 next_obs, reward, done, info = env.step(action) | ||||
|                 next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) | ||||
|  | ||||
|                 experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done)  # do we really need to copy? | ||||
|                 experience = Experience(observation=obs.copy(), next_observation=next_obs.copy(), | ||||
|                                         action=action, reward=reward, done=done)  # do we really need to copy? | ||||
|                 self.buffer.add(experience) | ||||
|                 # end of step routine | ||||
|                 obs = next_obs | ||||
|                 step += 1 | ||||
|                 total_reward += reward | ||||
|                 eps = self.anneal_eps(step, n_steps) | ||||
|                 self.anneal_eps(step, n_steps) | ||||
|  | ||||
|                 if step % self.train_every_n_steps == 0: | ||||
|                     self.train() | ||||
|                 if step % self.target_update == 0: | ||||
|                     self.target_q_net.load_state_dict(self.q_net.state_dict()) | ||||
|                     print('UPDATE') | ||||
|                     polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1.0) | ||||
|  | ||||
|  | ||||
|             self.running_reward.append(total_reward) | ||||
|             if step % 10 == 0: | ||||
|                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward)}\t' | ||||
|                       f' eps: {eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss)}') | ||||
|                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t' | ||||
|                       f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}') | ||||
|  | ||||
|     def _training_routine(self, obs, next_obs, action): | ||||
|         current_q_values = self.q_net(obs) | ||||
|         current_q_values = torch.gather(current_q_values, dim=1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||
|         return current_q_values, next_q_values_raw | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|  | ||||
|             experience = self.buffer.sample(self.batch_size) | ||||
|             #print(experience.observation.shape, experience.next_observation.shape, experience.action.shape, experience.reward.shape, experience.done.shape) | ||||
|             if self.n_agents <= 1: | ||||
|                 pred_q, target_q_raw = self._training_routine(experience.observation, experience.next_observation, experience.action) | ||||
|             else: | ||||
|                 pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1)) | ||||
|                 for agent_i in range(self.n_agents): | ||||
|                     q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i], | ||||
|                                                                          experience.next_observation[:, agent_i], | ||||
|                                                                          experience.action[:, agent_i].unsqueeze(-1) | ||||
|                                                                          ) | ||||
|                     pred_q += q_values | ||||
|                     target_q_raw += next_q_values_raw | ||||
|  | ||||
|             obs = torch.stack([torch.from_numpy(e.observation) for e in experience], 0).float() | ||||
|             next_obs = torch.stack([torch.from_numpy(e.next_observation) for e in experience], 0).float() | ||||
|             actions = torch.tensor([e.action for e in experience]).long() | ||||
|             rewards = torch.tensor([e.reward for e in experience]).float() | ||||
|             dones = torch.tensor([e.done for e in experience]).float() | ||||
|  | ||||
|             next_q_values = self.target_q_net(next_obs).detach().max(-1)[0] | ||||
|             target_q_values = rewards + (1. - dones) * self.gamma * next_q_values | ||||
|  | ||||
|  | ||||
|             q_values = self.q_net(obs).gather(-1, actions.unsqueeze(0)) | ||||
|  | ||||
|             delta = q_values - target_q_values | ||||
|             loss = torch.mean(self.reg_weight * q_values + torch.pow(delta, 2)) | ||||
|             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||
|             print(target_q) | ||||
|  | ||||
|             # log loss | ||||
|             self.running_loss.append(loss.item()) | ||||
|  | ||||
|             # Optimize the model | ||||
|             self.optimizer.zero_grad() | ||||
|             loss.backward() | ||||
| @@ -164,25 +194,33 @@ class BaseQlearner: | ||||
|             self.optimizer.step() | ||||
|  | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|     from algorithms.reg_dqn import RegDQN | ||||
|     from stable_baselines3.common.vec_env import DummyVecEnv | ||||
|  | ||||
|  | ||||
|     N_AGENTS = 1 | ||||
|  | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
|     move_props = MovementProperties(allow_diagonal_movement=True, | ||||
|                                     allow_square_movement=True, | ||||
|                                     allow_no_op=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=1, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False) | ||||
|     #print(env.action_space) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False) | ||||
|     env = DummyVecEnv([lambda: env]) | ||||
|     print(env) | ||||
|     from stable_baselines3.dqn import DQN | ||||
|  | ||||
|     #dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 25000, batch_size = 64, target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025) | ||||
|     #print(dqn.policy) | ||||
|     #dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 64, batch_size = 64, | ||||
|     #             target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025, | ||||
|     #             train_freq=4, gradient_steps=1, reg_weight=0.05) | ||||
|     #dqn.learn(100000) | ||||
|  | ||||
|  | ||||
|     print(env.observation_space, env.action_space) | ||||
|     dqn, target_dqn = BaseDQN(), BaseDQN() | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=5000, warmup=25000, lr=1e-4, gamma=0.99, | ||||
|                            train_every_n_steps=4, eps_end=0.05, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=10000, lr=0.0001, gamma=0.99, n_agents=N_AGENTS, | ||||
|                            train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64) | ||||
|     learner.learn(100000) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue