mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 04:37:25 +01:00 
			
		
		
		
	refactored algorithms
This commit is contained in:
		
							
								
								
									
										102
									
								
								algorithms/common.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										102
									
								
								algorithms/common.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,102 @@ | |||||||
|  | from typing import NamedTuple, Union | ||||||
|  | from collections import deque, OrderedDict | ||||||
|  | import numpy as np | ||||||
|  | import random | ||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class BaseLearner: | ||||||
|  |     def __init__(self, env, n_agents, lr): | ||||||
|  |         self.env = env | ||||||
|  |         self.n_agents = n_agents | ||||||
|  |         self.lr = lr | ||||||
|  |         self.device = 'cpu' | ||||||
|  |  | ||||||
|  |     def to(self, device): | ||||||
|  |         self.device = device | ||||||
|  |         for attr, value in self.__dict__.items(): | ||||||
|  |             if isinstance(value, nn.Module): | ||||||
|  |                 value = value.to(self.device) | ||||||
|  |         return self | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class Experience(NamedTuple): | ||||||
|  |     # can be use for a single (s_t, a, r s_{t+1}) tuple | ||||||
|  |     # or for a batch of tuples | ||||||
|  |     observation:      np.ndarray | ||||||
|  |     next_observation: np.ndarray | ||||||
|  |     action:           np.ndarray | ||||||
|  |     reward:           Union[float, np.ndarray] | ||||||
|  |     done  :           Union[bool, np.ndarray] | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class BaseBuffer: | ||||||
|  |     def __init__(self, size: int): | ||||||
|  |         self.size = size | ||||||
|  |         self.experience = deque(maxlen=size) | ||||||
|  |  | ||||||
|  |     def __len__(self): | ||||||
|  |         return len(self.experience) | ||||||
|  |  | ||||||
|  |     def add(self, experience): | ||||||
|  |         self.experience.append(experience) | ||||||
|  |  | ||||||
|  |     def sample(self, k, cer=4): | ||||||
|  |         sample = random.choices(self.experience, k=k-cer) | ||||||
|  |         for i in range(cer): sample += [self.experience[-i]] | ||||||
|  |         observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float() | ||||||
|  |         next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float() | ||||||
|  |         actions = torch.tensor([e.action for e in sample]).long() | ||||||
|  |         rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1) | ||||||
|  |         dones = torch.tensor([e.done for e in sample]).float().view(-1, 1) | ||||||
|  |         return Experience(observations, next_observations, actions, rewards, dones) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def soft_update(local_model, target_model, tau): | ||||||
|  |     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb | ||||||
|  |     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): | ||||||
|  |         target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'): | ||||||
|  |     activations = {'elu': nn.ELU, 'relu': nn.ReLU, | ||||||
|  |                   'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh, | ||||||
|  |                   'gelu': nn.GELU, 'identity': nn.Identity} | ||||||
|  |     layers = [('Flatten', nn.Flatten())] if flatten else [] | ||||||
|  |     for i in range(1, len(dims)): | ||||||
|  |         layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i]))) | ||||||
|  |         activation_str = activation if i != len(dims)-1 else activation_last | ||||||
|  |         layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]())) | ||||||
|  |     return nn.Sequential(OrderedDict(layers)) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class BaseDQN(nn.Module): | ||||||
|  |     def __init__(self, dims=[3*5*5, 64, 64, 9]): | ||||||
|  |         super(BaseDQN, self).__init__() | ||||||
|  |         self.net = mlp_maker(dims, flatten=True) | ||||||
|  |  | ||||||
|  |     @torch.no_grad() | ||||||
|  |     def act(self, x) -> np.ndarray: | ||||||
|  |         action = self.forward(x).max(-1)[1].numpy() | ||||||
|  |         return action | ||||||
|  |  | ||||||
|  |     def forward(self, x): | ||||||
|  |         return self.net(x) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class BaseDDQN(BaseDQN): | ||||||
|  |     def __init__(self, | ||||||
|  |                  backbone_dims=[3*5*5, 64, 64], | ||||||
|  |                  value_dims=[64, 1], | ||||||
|  |                  advantage_dims=[64, 9]): | ||||||
|  |         super(BaseDDQN, self).__init__(backbone_dims) | ||||||
|  |         self.net = mlp_maker(backbone_dims, flatten=True) | ||||||
|  |         self.value_head         =  mlp_maker(value_dims) | ||||||
|  |         self.advantage_head     =  mlp_maker(advantage_dims) | ||||||
|  |  | ||||||
|  |     def forward(self, x): | ||||||
|  |         features = self.net(x) | ||||||
|  |         advantages = self.advantage_head(features) | ||||||
|  |         values = self.value_head(features) | ||||||
|  |         return values + (advantages - advantages.mean()) | ||||||
| @@ -1,277 +0,0 @@ | |||||||
| from typing import NamedTuple, Union |  | ||||||
| from collections import deque, OrderedDict |  | ||||||
| import numpy as np |  | ||||||
| import random |  | ||||||
| import torch |  | ||||||
| import torch.nn as nn |  | ||||||
| import torch.nn.functional as F |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class Experience(NamedTuple): |  | ||||||
|     # can be use for a single (s_t, a, r s_{t+1}) tuple |  | ||||||
|     # or for a batch of tuples |  | ||||||
|     observation:      np.ndarray |  | ||||||
|     next_observation: np.ndarray |  | ||||||
|     action:           np.ndarray |  | ||||||
|     reward:           Union[float, np.ndarray] |  | ||||||
|     done  :           Union[bool, np.ndarray] |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class BaseBuffer: |  | ||||||
|     def __init__(self, size: int): |  | ||||||
|         self.size = size |  | ||||||
|         self.experience = deque(maxlen=size) |  | ||||||
|  |  | ||||||
|     def __len__(self): |  | ||||||
|         return len(self.experience) |  | ||||||
|  |  | ||||||
|     def add(self, experience): |  | ||||||
|         self.experience.append(experience) |  | ||||||
|  |  | ||||||
|     def sample(self, k, cer=4): |  | ||||||
|         sample = random.choices(self.experience, k=k-cer) |  | ||||||
|         for i in range(cer): sample += [self.experience[-i]] |  | ||||||
|         observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float() |  | ||||||
|         next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float() |  | ||||||
|         actions = torch.tensor([e.action for e in sample]).long() |  | ||||||
|         rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1) |  | ||||||
|         dones = torch.tensor([e.done for e in sample]).float().view(-1, 1) |  | ||||||
|         return Experience(observations, next_observations, actions, rewards, dones) |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def soft_update(local_model, target_model, tau): |  | ||||||
|     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb |  | ||||||
|     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): |  | ||||||
|         target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'): |  | ||||||
|     activations = {'elu': nn.ELU, 'relu': nn.ReLU, |  | ||||||
|                   'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh, |  | ||||||
|                   'gelu': nn.GELU, 'identity': nn.Identity} |  | ||||||
|     layers = [('Flatten', nn.Flatten())] if flatten else [] |  | ||||||
|     for i in range(1, len(dims)): |  | ||||||
|         layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i]))) |  | ||||||
|         activation_str = activation if i != len(dims)-1 else activation_last |  | ||||||
|         layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]())) |  | ||||||
|     return nn.Sequential(OrderedDict(layers)) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class BaseDQN(nn.Module): |  | ||||||
|     def __init__(self, dims=[3*5*5, 64, 64, 9]): |  | ||||||
|         super(BaseDQN, self).__init__() |  | ||||||
|         self.net = mlp_maker(dims, flatten=True) |  | ||||||
|  |  | ||||||
|     def act(self, x) -> np.ndarray: |  | ||||||
|         with torch.no_grad(): |  | ||||||
|             action = self.forward(x).max(-1)[1].numpy() |  | ||||||
|         return action |  | ||||||
|  |  | ||||||
|     def forward(self, x): |  | ||||||
|         return self.net(x) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class BaseDDQN(BaseDQN): |  | ||||||
|     def __init__(self, |  | ||||||
|                  backbone_dims=[3*5*5, 64, 64], |  | ||||||
|                  value_dims=[64,1], |  | ||||||
|                  advantage_dims=[64,9]): |  | ||||||
|         super(BaseDDQN, self).__init__(backbone_dims) |  | ||||||
|         self.net = mlp_maker(backbone_dims, flatten=True) |  | ||||||
|         self.value_head         =  mlp_maker(value_dims) |  | ||||||
|         self.advantage_head     =  mlp_maker(advantage_dims) |  | ||||||
|  |  | ||||||
|     def forward(self, x): |  | ||||||
|         features = self.net(x) |  | ||||||
|         advantages = self.advantage_head(features) |  | ||||||
|         values = self.value_head(features) |  | ||||||
|         return values + (advantages - advantages.mean()) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class BaseQlearner: |  | ||||||
|     def __init__(self, q_net, target_q_net, env, buffer_size, target_update, eps_end, n_agents=1, |  | ||||||
|                  gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10, |  | ||||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0): |  | ||||||
|         self.q_net = q_net |  | ||||||
|         self.target_q_net = target_q_net |  | ||||||
|         self.target_q_net.eval() |  | ||||||
|         soft_update(self.q_net, self.target_q_net, tau=1.0) |  | ||||||
|         self.env = env |  | ||||||
|         self.buffer = BaseBuffer(buffer_size) |  | ||||||
|         self.target_update = target_update |  | ||||||
|         self.eps = 1. |  | ||||||
|         self.eps_end = eps_end |  | ||||||
|         self.exploration_fraction = exploration_fraction |  | ||||||
|         self.batch_size = batch_size |  | ||||||
|         self.gamma = gamma |  | ||||||
|         self.train_every_n_steps = train_every_n_steps |  | ||||||
|         self.n_grad_steps = n_grad_steps |  | ||||||
|         self.lr = lr |  | ||||||
|         self.tau = tau |  | ||||||
|         self.reg_weight = reg_weight |  | ||||||
|         self.n_agents = n_agents |  | ||||||
|         self.device = 'cpu' |  | ||||||
|         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr) |  | ||||||
|         self.max_grad_norm = max_grad_norm |  | ||||||
|         self.running_reward = deque(maxlen=5) |  | ||||||
|         self.running_loss = deque(maxlen=5) |  | ||||||
|         self._n_updates = 0 |  | ||||||
|  |  | ||||||
|     def to(self, device): |  | ||||||
|         self.device = device |  | ||||||
|         return self |  | ||||||
|  |  | ||||||
|     @staticmethod |  | ||||||
|     def weights_init(module, activation='leaky_relu'): |  | ||||||
|         if isinstance(module, (nn.Linear, nn.Conv2d)): |  | ||||||
|             nn.init.orthogonal_(module.weight, gain=torch.nn.init.calculate_gain(activation)) |  | ||||||
|             if module.bias is not None: |  | ||||||
|                 module.bias.data.fill_(0.0) |  | ||||||
|  |  | ||||||
|     def anneal_eps(self, step, n_steps): |  | ||||||
|         fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0) |  | ||||||
|         self.eps = 1 + fraction * (self.eps_end - 1) |  | ||||||
|  |  | ||||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: |  | ||||||
|         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) |  | ||||||
|         if np.random.rand() > self.eps: |  | ||||||
|             action = self.q_net.act(o.float()) |  | ||||||
|         else: |  | ||||||
|             action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)]) |  | ||||||
|         return action |  | ||||||
|  |  | ||||||
|     def learn(self, n_steps): |  | ||||||
|         step = 0 |  | ||||||
|         while step < n_steps: |  | ||||||
|             obs, done = self.env.reset(), False |  | ||||||
|             total_reward = 0 |  | ||||||
|             while not done: |  | ||||||
|  |  | ||||||
|                 action = self.get_action(obs) |  | ||||||
|  |  | ||||||
|                 next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) |  | ||||||
|  |  | ||||||
|                 experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done)  # do we really need to copy? |  | ||||||
|                 self.buffer.add(experience) |  | ||||||
|                 # end of step routine |  | ||||||
|                 obs = next_obs |  | ||||||
|                 step += 1 |  | ||||||
|                 total_reward += reward |  | ||||||
|                 self.anneal_eps(step, n_steps) |  | ||||||
|  |  | ||||||
|                 if step % self.train_every_n_steps == 0: |  | ||||||
|                     self.train() |  | ||||||
|                     self._n_updates += 1 |  | ||||||
|                 if step % self.target_update == 0: |  | ||||||
|                     print('UPDATE') |  | ||||||
|                     soft_update(self.q_net, self.target_q_net, tau=self.tau) |  | ||||||
|  |  | ||||||
|             self.running_reward.append(total_reward) |  | ||||||
|             if step % 10 == 0: |  | ||||||
|                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t' |  | ||||||
|                       f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self._n_updates}') |  | ||||||
|  |  | ||||||
|     def _training_routine(self, obs, next_obs, action): |  | ||||||
|         current_q_values = self.q_net(obs) |  | ||||||
|         current_q_values = torch.gather(current_q_values, dim=-1, index=action) |  | ||||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() |  | ||||||
|         return current_q_values, next_q_values_raw |  | ||||||
|  |  | ||||||
|     def _backprop_loss(self, loss): |  | ||||||
|         # log loss |  | ||||||
|         self.running_loss.append(loss.item()) |  | ||||||
|         # Optimize the model |  | ||||||
|         self.optimizer.zero_grad() |  | ||||||
|         loss.backward() |  | ||||||
|         torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm) |  | ||||||
|         self.optimizer.step() |  | ||||||
|  |  | ||||||
|     def train(self): |  | ||||||
|         if len(self.buffer) < self.batch_size: return |  | ||||||
|         for _ in range(self.n_grad_steps): |  | ||||||
|  |  | ||||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) |  | ||||||
|             if self.n_agents <= 1: |  | ||||||
|                 pred_q, target_q_raw = self._training_routine(experience.observation, |  | ||||||
|                                                               experience.next_observation, |  | ||||||
|                                                               experience.action) |  | ||||||
|  |  | ||||||
|             else: |  | ||||||
|                 pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1)) |  | ||||||
|                 for agent_i in range(self.n_agents): |  | ||||||
|                     q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i], |  | ||||||
|                                                                          experience.next_observation[:, agent_i], |  | ||||||
|                                                                          experience.action[:, agent_i].unsqueeze(-1)) |  | ||||||
|                     pred_q += q_values |  | ||||||
|                     target_q_raw += next_q_values_raw |  | ||||||
|             target_q = experience.reward  + (1 - experience.done) * self.gamma * target_q_raw |  | ||||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) |  | ||||||
|             self._backprop_loss(loss) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class MunchhausenQLearner(BaseQlearner): |  | ||||||
|     def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs): |  | ||||||
|         super(MunchhausenQLearner, self).__init__(*args, **kwargs) |  | ||||||
|         assert self.n_agents == 1, 'M-DQN currently only supports single agent training' |  | ||||||
|         self.temperature = temperature |  | ||||||
|         self.alpha = alpha |  | ||||||
|         self.clip0 = clip_l0 |  | ||||||
|  |  | ||||||
|     def tau_ln_pi(self, qs): |  | ||||||
|         # computes log(softmax(qs/temperature)) |  | ||||||
|         # Custom log-sum-exp trick from page 18 to compute the log-policy terms |  | ||||||
|         v_k = qs.max(-1)[0].unsqueeze(-1) |  | ||||||
|         advantage = qs - v_k |  | ||||||
|         logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1) |  | ||||||
|         tau_ln_pi = advantage - self.temperature * logsum |  | ||||||
|         return tau_ln_pi |  | ||||||
|  |  | ||||||
|     def train(self): |  | ||||||
|         if len(self.buffer) < self.batch_size: return |  | ||||||
|         for _ in range(self.n_grad_steps): |  | ||||||
|  |  | ||||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) |  | ||||||
|  |  | ||||||
|             q_target_next = self.target_q_net(experience.next_observation).detach() |  | ||||||
|             tau_log_pi_next = self.tau_ln_pi(q_target_next) |  | ||||||
|  |  | ||||||
|             q_k_targets = self.target_q_net(experience.observation).detach() |  | ||||||
|             log_pi = self.tau_ln_pi(q_k_targets) |  | ||||||
|  |  | ||||||
|             pi_target = F.softmax(q_target_next / self.temperature, dim=-1) |  | ||||||
|             q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1) |  | ||||||
|  |  | ||||||
|             munchausen_addon = log_pi.gather(-1, experience.action) |  | ||||||
|  |  | ||||||
|             munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0)) |  | ||||||
|  |  | ||||||
|             # Compute Q targets for current states |  | ||||||
|             m_q_target = munchausen_reward + q_target |  | ||||||
|  |  | ||||||
|             # Get expected Q values from local model |  | ||||||
|             q_k = self.q_net(experience.observation) |  | ||||||
|             pred_q = q_k.gather(-1, experience.action) |  | ||||||
|  |  | ||||||
|             # Compute loss |  | ||||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2)) |  | ||||||
|             self._backprop_loss(loss) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': |  | ||||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties |  | ||||||
|  |  | ||||||
|     N_AGENTS = 1 |  | ||||||
|  |  | ||||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, |  | ||||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) |  | ||||||
|     move_props = MovementProperties(allow_diagonal_movement=True, |  | ||||||
|                                     allow_square_movement=True, |  | ||||||
|                                     allow_no_op=False) |  | ||||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) |  | ||||||
|  |  | ||||||
|     dqn, target_dqn = BaseDDQN(), BaseDDQN() |  | ||||||
|     learner = MunchhausenQLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, |  | ||||||
|                            train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) |  | ||||||
|     learner.learn(100000) |  | ||||||
							
								
								
									
										53
									
								
								algorithms/m_q_learner.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										53
									
								
								algorithms/m_q_learner.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,53 @@ | |||||||
|  | import torch | ||||||
|  | import torch.nn.functional as F | ||||||
|  | from algorithms.q_learner import QLearner | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class MQLearner(QLearner): | ||||||
|  |     # Munchhausen Q-Learning | ||||||
|  |     def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs): | ||||||
|  |         super(MQLearner, self).__init__(*args, **kwargs) | ||||||
|  |         assert self.n_agents == 1, 'M-DQN currently only supports single agent training' | ||||||
|  |         self.temperature = temperature | ||||||
|  |         self.alpha = alpha | ||||||
|  |         self.clip0 = clip_l0 | ||||||
|  |  | ||||||
|  |     def tau_ln_pi(self, qs): | ||||||
|  |         # computes log(softmax(qs/temperature)) | ||||||
|  |         # Custom log-sum-exp trick from page 18 to compute the log-policy terms | ||||||
|  |         v_k = qs.max(-1)[0].unsqueeze(-1) | ||||||
|  |         advantage = qs - v_k | ||||||
|  |         logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1) | ||||||
|  |         tau_ln_pi = advantage - self.temperature * logsum | ||||||
|  |         return tau_ln_pi | ||||||
|  |  | ||||||
|  |     def train(self): | ||||||
|  |         if len(self.buffer) < self.batch_size: return | ||||||
|  |         for _ in range(self.n_grad_steps): | ||||||
|  |  | ||||||
|  |             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||||
|  |  | ||||||
|  |             with torch.no_grad(): | ||||||
|  |                 q_target_next = self.target_q_net(experience.next_observation) | ||||||
|  |                 tau_log_pi_next = self.tau_ln_pi(q_target_next) | ||||||
|  |  | ||||||
|  |                 q_k_targets = self.target_q_net(experience.observation) | ||||||
|  |                 log_pi = self.tau_ln_pi(q_k_targets) | ||||||
|  |  | ||||||
|  |                 pi_target = F.softmax(q_target_next / self.temperature, dim=-1) | ||||||
|  |                 q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1) | ||||||
|  |  | ||||||
|  |                 munchausen_addon = log_pi.gather(-1, experience.action) | ||||||
|  |  | ||||||
|  |                 munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0)) | ||||||
|  |  | ||||||
|  |                 # Compute Q targets for current states | ||||||
|  |                 m_q_target = munchausen_reward + q_target | ||||||
|  |  | ||||||
|  |             # Get expected Q values from local model | ||||||
|  |             q_k = self.q_net(experience.observation) | ||||||
|  |             pred_q = q_k.gather(-1, experience.action) | ||||||
|  |  | ||||||
|  |             # Compute loss | ||||||
|  |             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2)) | ||||||
|  |             self._backprop_loss(loss) | ||||||
							
								
								
									
										144
									
								
								algorithms/q_learner.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										144
									
								
								algorithms/q_learner.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,144 @@ | |||||||
|  | from typing import Union | ||||||
|  | import gym | ||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | import numpy as np | ||||||
|  | from collections import deque | ||||||
|  | from pathlib import Path | ||||||
|  | import yaml | ||||||
|  | from algorithms.common import BaseLearner, BaseBuffer, soft_update, Experience | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class QLearner(BaseLearner): | ||||||
|  |     def __init__(self, q_net, target_q_net, env, buffer_size=1e5, target_update=3000, eps_end=0.05, n_agents=1, | ||||||
|  |                  gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2, | ||||||
|  |                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0, eps_start=1): | ||||||
|  |         super(QLearner, self).__init__(env, n_agents, lr) | ||||||
|  |         self.q_net = q_net | ||||||
|  |         self.target_q_net = target_q_net | ||||||
|  |         self.target_q_net.eval() | ||||||
|  |         soft_update(self.q_net, self.target_q_net, tau=1.0) | ||||||
|  |         self.buffer = BaseBuffer(buffer_size) | ||||||
|  |         self.target_update = target_update | ||||||
|  |         self.eps = eps_start | ||||||
|  |         self.eps_start = eps_start | ||||||
|  |         self.eps_end = eps_end | ||||||
|  |         self.exploration_fraction = exploration_fraction | ||||||
|  |         self.batch_size = batch_size | ||||||
|  |         self.gamma = gamma | ||||||
|  |         self.train_every_n_steps = train_every_n_steps | ||||||
|  |         self.n_grad_steps = n_grad_steps | ||||||
|  |         self.tau = tau | ||||||
|  |         self.reg_weight = reg_weight | ||||||
|  |         self.weight_decay = weight_decay | ||||||
|  |         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), | ||||||
|  |                                            lr=self.lr, | ||||||
|  |                                            weight_decay=self.weight_decay) | ||||||
|  |         self.max_grad_norm = max_grad_norm | ||||||
|  |         self.running_reward = deque(maxlen=5) | ||||||
|  |         self.running_loss = deque(maxlen=5) | ||||||
|  |         self.n_updates = 0 | ||||||
|  |  | ||||||
|  |     def save(self, path): | ||||||
|  |         path = Path(path)  # no-op if already instance of Path | ||||||
|  |         path.mkdir(parents=True, exist_ok=True) | ||||||
|  |         hparams = {k: v for k, v in self.__dict__.items() if not(isinstance(v, BaseBuffer) or | ||||||
|  |                                                                  isinstance(v, torch.optim.Optimizer) or | ||||||
|  |                                                                  isinstance(v, gym.Env) or | ||||||
|  |                                                                  isinstance(v, nn.Module)) | ||||||
|  |                    } | ||||||
|  |         hparams.update({'class': self.__class__.__name__}) | ||||||
|  |         with (path / 'hparams.yaml').open('w') as outfile: | ||||||
|  |             yaml.dump(hparams, outfile) | ||||||
|  |         torch.save(self.q_net, path / 'q_net.pt') | ||||||
|  |  | ||||||
|  |     def anneal_eps(self, step, n_steps): | ||||||
|  |         fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0) | ||||||
|  |         self.eps = 1 + fraction * (self.eps_end - 1) | ||||||
|  |  | ||||||
|  |     def get_action(self, obs) -> Union[int, np.ndarray]: | ||||||
|  |         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) | ||||||
|  |         if np.random.rand() > self.eps: | ||||||
|  |             action = self.q_net.act(o.float()) | ||||||
|  |         else: | ||||||
|  |             action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)]) | ||||||
|  |         return action | ||||||
|  |  | ||||||
|  |     def learn(self, n_steps): | ||||||
|  |         step = 0 | ||||||
|  |         while step < n_steps: | ||||||
|  |             obs, done = self.env.reset(), False | ||||||
|  |             total_reward = 0 | ||||||
|  |             while not done: | ||||||
|  |  | ||||||
|  |                 action = self.get_action(obs) | ||||||
|  |  | ||||||
|  |                 next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) | ||||||
|  |  | ||||||
|  |                 experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done)  # do we really need to copy? | ||||||
|  |                 self.buffer.add(experience) | ||||||
|  |                 # end of step routine | ||||||
|  |                 obs = next_obs | ||||||
|  |                 step += 1 | ||||||
|  |                 total_reward += reward | ||||||
|  |                 self.anneal_eps(step, n_steps) | ||||||
|  |  | ||||||
|  |                 if step % self.train_every_n_steps == 0: | ||||||
|  |                     self.train() | ||||||
|  |                     self.n_updates += 1 | ||||||
|  |                 if step % self.target_update == 0: | ||||||
|  |                     print('UPDATE') | ||||||
|  |                     soft_update(self.q_net, self.target_q_net, tau=self.tau) | ||||||
|  |  | ||||||
|  |             self.running_reward.append(total_reward) | ||||||
|  |             if step % 10 == 0: | ||||||
|  |                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t' | ||||||
|  |                       f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self.n_updates}') | ||||||
|  |  | ||||||
|  |     def _training_routine(self, obs, next_obs, action): | ||||||
|  |         current_q_values = self.q_net(obs) | ||||||
|  |         current_q_values = torch.gather(current_q_values, dim=-1, index=action) | ||||||
|  |         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||||
|  |         return current_q_values, next_q_values_raw | ||||||
|  |  | ||||||
|  |     def _backprop_loss(self, loss): | ||||||
|  |         # log loss | ||||||
|  |         self.running_loss.append(loss.item()) | ||||||
|  |         # Optimize the model | ||||||
|  |         self.optimizer.zero_grad() | ||||||
|  |         loss.backward() | ||||||
|  |         torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm) | ||||||
|  |         self.optimizer.step() | ||||||
|  |  | ||||||
|  |     def train(self): | ||||||
|  |         if len(self.buffer) < self.batch_size: return | ||||||
|  |         for _ in range(self.n_grad_steps): | ||||||
|  |             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||||
|  |             pred_q, target_q_raw = self._training_routine(experience.observation, | ||||||
|  |                                                           experience.next_observation, | ||||||
|  |                                                           experience.action) | ||||||
|  |             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw | ||||||
|  |             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||||
|  |             self._backprop_loss(loss) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||||
|  |     from algorithms.common import BaseDDQN | ||||||
|  |     from algorithms.vdn_learner import VDNLearner | ||||||
|  |  | ||||||
|  |     N_AGENTS = 1 | ||||||
|  |  | ||||||
|  |     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||||
|  |                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||||
|  |     move_props = MovementProperties(allow_diagonal_movement=True, | ||||||
|  |                                     allow_square_movement=True, | ||||||
|  |                                     allow_no_op=False) | ||||||
|  |     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) | ||||||
|  |  | ||||||
|  |     dqn, target_dqn = BaseDDQN(), BaseDDQN() | ||||||
|  |     learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||||
|  |                        train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||||
|  |     #learner.save(Path(__file__).parent / 'test' / 'testexperiment1337') | ||||||
|  |     learner.learn(100000) | ||||||
							
								
								
									
										23
									
								
								algorithms/vdn_learner.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								algorithms/vdn_learner.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,23 @@ | |||||||
|  | import torch | ||||||
|  | from algorithms.q_learner import QLearner | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class VDNLearner(QLearner): | ||||||
|  |     def __init__(self, *args, **kwargs): | ||||||
|  |         super(VDNLearner, self).__init__(*args, **kwargs) | ||||||
|  |         assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead' | ||||||
|  |  | ||||||
|  |     def train(self): | ||||||
|  |         if len(self.buffer) < self.batch_size: return | ||||||
|  |         for _ in range(self.n_grad_steps): | ||||||
|  |             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||||
|  |             pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1)) | ||||||
|  |             for agent_i in range(self.n_agents): | ||||||
|  |                 q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i], | ||||||
|  |                                                                      experience.next_observation[:, agent_i], | ||||||
|  |                                                                      experience.action[:, agent_i].unsqueeze(-1)) | ||||||
|  |                 pred_q += q_values | ||||||
|  |                 target_q_raw += next_q_values_raw | ||||||
|  |             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw | ||||||
|  |             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||||
|  |             self._backprop_loss(loss) | ||||||
		Reference in New Issue
	
	Block a user
	 romue
					romue