mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	refactored algorithms
This commit is contained in:
		
							
								
								
									
										102
									
								
								algorithms/common.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										102
									
								
								algorithms/common.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,102 @@ | ||||
| from typing import NamedTuple, Union | ||||
| from collections import deque, OrderedDict | ||||
| import numpy as np | ||||
| import random | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| class BaseLearner: | ||||
|     def __init__(self, env, n_agents, lr): | ||||
|         self.env = env | ||||
|         self.n_agents = n_agents | ||||
|         self.lr = lr | ||||
|         self.device = 'cpu' | ||||
|  | ||||
|     def to(self, device): | ||||
|         self.device = device | ||||
|         for attr, value in self.__dict__.items(): | ||||
|             if isinstance(value, nn.Module): | ||||
|                 value = value.to(self.device) | ||||
|         return self | ||||
|  | ||||
|  | ||||
| class Experience(NamedTuple): | ||||
|     # can be use for a single (s_t, a, r s_{t+1}) tuple | ||||
|     # or for a batch of tuples | ||||
|     observation:      np.ndarray | ||||
|     next_observation: np.ndarray | ||||
|     action:           np.ndarray | ||||
|     reward:           Union[float, np.ndarray] | ||||
|     done  :           Union[bool, np.ndarray] | ||||
|  | ||||
|  | ||||
| class BaseBuffer: | ||||
|     def __init__(self, size: int): | ||||
|         self.size = size | ||||
|         self.experience = deque(maxlen=size) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.experience) | ||||
|  | ||||
|     def add(self, experience): | ||||
|         self.experience.append(experience) | ||||
|  | ||||
|     def sample(self, k, cer=4): | ||||
|         sample = random.choices(self.experience, k=k-cer) | ||||
|         for i in range(cer): sample += [self.experience[-i]] | ||||
|         observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float() | ||||
|         next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float() | ||||
|         actions = torch.tensor([e.action for e in sample]).long() | ||||
|         rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1) | ||||
|         dones = torch.tensor([e.done for e in sample]).float().view(-1, 1) | ||||
|         return Experience(observations, next_observations, actions, rewards, dones) | ||||
|  | ||||
|  | ||||
| def soft_update(local_model, target_model, tau): | ||||
|     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb | ||||
|     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): | ||||
|         target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data) | ||||
|  | ||||
|  | ||||
| def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'): | ||||
|     activations = {'elu': nn.ELU, 'relu': nn.ReLU, | ||||
|                   'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh, | ||||
|                   'gelu': nn.GELU, 'identity': nn.Identity} | ||||
|     layers = [('Flatten', nn.Flatten())] if flatten else [] | ||||
|     for i in range(1, len(dims)): | ||||
|         layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i]))) | ||||
|         activation_str = activation if i != len(dims)-1 else activation_last | ||||
|         layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]())) | ||||
|     return nn.Sequential(OrderedDict(layers)) | ||||
|  | ||||
|  | ||||
| class BaseDQN(nn.Module): | ||||
|     def __init__(self, dims=[3*5*5, 64, 64, 9]): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         self.net = mlp_maker(dims, flatten=True) | ||||
|  | ||||
|     @torch.no_grad() | ||||
|     def act(self, x) -> np.ndarray: | ||||
|         action = self.forward(x).max(-1)[1].numpy() | ||||
|         return action | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.net(x) | ||||
|  | ||||
|  | ||||
| class BaseDDQN(BaseDQN): | ||||
|     def __init__(self, | ||||
|                  backbone_dims=[3*5*5, 64, 64], | ||||
|                  value_dims=[64, 1], | ||||
|                  advantage_dims=[64, 9]): | ||||
|         super(BaseDDQN, self).__init__(backbone_dims) | ||||
|         self.net = mlp_maker(backbone_dims, flatten=True) | ||||
|         self.value_head         =  mlp_maker(value_dims) | ||||
|         self.advantage_head     =  mlp_maker(advantage_dims) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         features = self.net(x) | ||||
|         advantages = self.advantage_head(features) | ||||
|         values = self.value_head(features) | ||||
|         return values + (advantages - advantages.mean()) | ||||
| @@ -1,277 +0,0 @@ | ||||
| from typing import NamedTuple, Union | ||||
| from collections import deque, OrderedDict | ||||
| import numpy as np | ||||
| import random | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
|  | ||||
| class Experience(NamedTuple): | ||||
|     # can be use for a single (s_t, a, r s_{t+1}) tuple | ||||
|     # or for a batch of tuples | ||||
|     observation:      np.ndarray | ||||
|     next_observation: np.ndarray | ||||
|     action:           np.ndarray | ||||
|     reward:           Union[float, np.ndarray] | ||||
|     done  :           Union[bool, np.ndarray] | ||||
|  | ||||
|  | ||||
| class BaseBuffer: | ||||
|     def __init__(self, size: int): | ||||
|         self.size = size | ||||
|         self.experience = deque(maxlen=size) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.experience) | ||||
|  | ||||
|     def add(self, experience): | ||||
|         self.experience.append(experience) | ||||
|  | ||||
|     def sample(self, k, cer=4): | ||||
|         sample = random.choices(self.experience, k=k-cer) | ||||
|         for i in range(cer): sample += [self.experience[-i]] | ||||
|         observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float() | ||||
|         next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float() | ||||
|         actions = torch.tensor([e.action for e in sample]).long() | ||||
|         rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1) | ||||
|         dones = torch.tensor([e.done for e in sample]).float().view(-1, 1) | ||||
|         return Experience(observations, next_observations, actions, rewards, dones) | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| def soft_update(local_model, target_model, tau): | ||||
|     # taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb | ||||
|     for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): | ||||
|         target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data) | ||||
|  | ||||
|  | ||||
| def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'): | ||||
|     activations = {'elu': nn.ELU, 'relu': nn.ReLU, | ||||
|                   'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh, | ||||
|                   'gelu': nn.GELU, 'identity': nn.Identity} | ||||
|     layers = [('Flatten', nn.Flatten())] if flatten else [] | ||||
|     for i in range(1, len(dims)): | ||||
|         layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i]))) | ||||
|         activation_str = activation if i != len(dims)-1 else activation_last | ||||
|         layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]())) | ||||
|     return nn.Sequential(OrderedDict(layers)) | ||||
|  | ||||
|  | ||||
| class BaseDQN(nn.Module): | ||||
|     def __init__(self, dims=[3*5*5, 64, 64, 9]): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         self.net = mlp_maker(dims, flatten=True) | ||||
|  | ||||
|     def act(self, x) -> np.ndarray: | ||||
|         with torch.no_grad(): | ||||
|             action = self.forward(x).max(-1)[1].numpy() | ||||
|         return action | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.net(x) | ||||
|  | ||||
|  | ||||
| class BaseDDQN(BaseDQN): | ||||
|     def __init__(self, | ||||
|                  backbone_dims=[3*5*5, 64, 64], | ||||
|                  value_dims=[64,1], | ||||
|                  advantage_dims=[64,9]): | ||||
|         super(BaseDDQN, self).__init__(backbone_dims) | ||||
|         self.net = mlp_maker(backbone_dims, flatten=True) | ||||
|         self.value_head         =  mlp_maker(value_dims) | ||||
|         self.advantage_head     =  mlp_maker(advantage_dims) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         features = self.net(x) | ||||
|         advantages = self.advantage_head(features) | ||||
|         values = self.value_head(features) | ||||
|         return values + (advantages - advantages.mean()) | ||||
|  | ||||
|  | ||||
| class BaseQlearner: | ||||
|     def __init__(self, q_net, target_q_net, env, buffer_size, target_update, eps_end, n_agents=1, | ||||
|                  gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10, | ||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0): | ||||
|         self.q_net = q_net | ||||
|         self.target_q_net = target_q_net | ||||
|         self.target_q_net.eval() | ||||
|         soft_update(self.q_net, self.target_q_net, tau=1.0) | ||||
|         self.env = env | ||||
|         self.buffer = BaseBuffer(buffer_size) | ||||
|         self.target_update = target_update | ||||
|         self.eps = 1. | ||||
|         self.eps_end = eps_end | ||||
|         self.exploration_fraction = exploration_fraction | ||||
|         self.batch_size = batch_size | ||||
|         self.gamma = gamma | ||||
|         self.train_every_n_steps = train_every_n_steps | ||||
|         self.n_grad_steps = n_grad_steps | ||||
|         self.lr = lr | ||||
|         self.tau = tau | ||||
|         self.reg_weight = reg_weight | ||||
|         self.n_agents = n_agents | ||||
|         self.device = 'cpu' | ||||
|         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr) | ||||
|         self.max_grad_norm = max_grad_norm | ||||
|         self.running_reward = deque(maxlen=5) | ||||
|         self.running_loss = deque(maxlen=5) | ||||
|         self._n_updates = 0 | ||||
|  | ||||
|     def to(self, device): | ||||
|         self.device = device | ||||
|         return self | ||||
|  | ||||
|     @staticmethod | ||||
|     def weights_init(module, activation='leaky_relu'): | ||||
|         if isinstance(module, (nn.Linear, nn.Conv2d)): | ||||
|             nn.init.orthogonal_(module.weight, gain=torch.nn.init.calculate_gain(activation)) | ||||
|             if module.bias is not None: | ||||
|                 module.bias.data.fill_(0.0) | ||||
|  | ||||
|     def anneal_eps(self, step, n_steps): | ||||
|         fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0) | ||||
|         self.eps = 1 + fraction * (self.eps_end - 1) | ||||
|  | ||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: | ||||
|         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) | ||||
|         if np.random.rand() > self.eps: | ||||
|             action = self.q_net.act(o.float()) | ||||
|         else: | ||||
|             action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)]) | ||||
|         return action | ||||
|  | ||||
|     def learn(self, n_steps): | ||||
|         step = 0 | ||||
|         while step < n_steps: | ||||
|             obs, done = self.env.reset(), False | ||||
|             total_reward = 0 | ||||
|             while not done: | ||||
|  | ||||
|                 action = self.get_action(obs) | ||||
|  | ||||
|                 next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) | ||||
|  | ||||
|                 experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done)  # do we really need to copy? | ||||
|                 self.buffer.add(experience) | ||||
|                 # end of step routine | ||||
|                 obs = next_obs | ||||
|                 step += 1 | ||||
|                 total_reward += reward | ||||
|                 self.anneal_eps(step, n_steps) | ||||
|  | ||||
|                 if step % self.train_every_n_steps == 0: | ||||
|                     self.train() | ||||
|                     self._n_updates += 1 | ||||
|                 if step % self.target_update == 0: | ||||
|                     print('UPDATE') | ||||
|                     soft_update(self.q_net, self.target_q_net, tau=self.tau) | ||||
|  | ||||
|             self.running_reward.append(total_reward) | ||||
|             if step % 10 == 0: | ||||
|                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t' | ||||
|                       f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self._n_updates}') | ||||
|  | ||||
|     def _training_routine(self, obs, next_obs, action): | ||||
|         current_q_values = self.q_net(obs) | ||||
|         current_q_values = torch.gather(current_q_values, dim=-1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||
|         return current_q_values, next_q_values_raw | ||||
|  | ||||
|     def _backprop_loss(self, loss): | ||||
|         # log loss | ||||
|         self.running_loss.append(loss.item()) | ||||
|         # Optimize the model | ||||
|         self.optimizer.zero_grad() | ||||
|         loss.backward() | ||||
|         torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm) | ||||
|         self.optimizer.step() | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|  | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|             if self.n_agents <= 1: | ||||
|                 pred_q, target_q_raw = self._training_routine(experience.observation, | ||||
|                                                               experience.next_observation, | ||||
|                                                               experience.action) | ||||
|  | ||||
|             else: | ||||
|                 pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1)) | ||||
|                 for agent_i in range(self.n_agents): | ||||
|                     q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i], | ||||
|                                                                          experience.next_observation[:, agent_i], | ||||
|                                                                          experience.action[:, agent_i].unsqueeze(-1)) | ||||
|                     pred_q += q_values | ||||
|                     target_q_raw += next_q_values_raw | ||||
|             target_q = experience.reward  + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||
|             self._backprop_loss(loss) | ||||
|  | ||||
|  | ||||
| class MunchhausenQLearner(BaseQlearner): | ||||
|     def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs): | ||||
|         super(MunchhausenQLearner, self).__init__(*args, **kwargs) | ||||
|         assert self.n_agents == 1, 'M-DQN currently only supports single agent training' | ||||
|         self.temperature = temperature | ||||
|         self.alpha = alpha | ||||
|         self.clip0 = clip_l0 | ||||
|  | ||||
|     def tau_ln_pi(self, qs): | ||||
|         # computes log(softmax(qs/temperature)) | ||||
|         # Custom log-sum-exp trick from page 18 to compute the log-policy terms | ||||
|         v_k = qs.max(-1)[0].unsqueeze(-1) | ||||
|         advantage = qs - v_k | ||||
|         logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1) | ||||
|         tau_ln_pi = advantage - self.temperature * logsum | ||||
|         return tau_ln_pi | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|  | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|  | ||||
|             q_target_next = self.target_q_net(experience.next_observation).detach() | ||||
|             tau_log_pi_next = self.tau_ln_pi(q_target_next) | ||||
|  | ||||
|             q_k_targets = self.target_q_net(experience.observation).detach() | ||||
|             log_pi = self.tau_ln_pi(q_k_targets) | ||||
|  | ||||
|             pi_target = F.softmax(q_target_next / self.temperature, dim=-1) | ||||
|             q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1) | ||||
|  | ||||
|             munchausen_addon = log_pi.gather(-1, experience.action) | ||||
|  | ||||
|             munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0)) | ||||
|  | ||||
|             # Compute Q targets for current states | ||||
|             m_q_target = munchausen_reward + q_target | ||||
|  | ||||
|             # Get expected Q values from local model | ||||
|             q_k = self.q_net(experience.observation) | ||||
|             pred_q = q_k.gather(-1, experience.action) | ||||
|  | ||||
|             # Compute loss | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2)) | ||||
|             self._backprop_loss(loss) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|  | ||||
|     N_AGENTS = 1 | ||||
|  | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
|     move_props = MovementProperties(allow_diagonal_movement=True, | ||||
|                                     allow_square_movement=True, | ||||
|                                     allow_no_op=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) | ||||
|  | ||||
|     dqn, target_dqn = BaseDDQN(), BaseDDQN() | ||||
|     learner = MunchhausenQLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                            train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     learner.learn(100000) | ||||
							
								
								
									
										53
									
								
								algorithms/m_q_learner.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										53
									
								
								algorithms/m_q_learner.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,53 @@ | ||||
| import torch | ||||
| import torch.nn.functional as F | ||||
| from algorithms.q_learner import QLearner | ||||
|  | ||||
|  | ||||
| class MQLearner(QLearner): | ||||
|     # Munchhausen Q-Learning | ||||
|     def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs): | ||||
|         super(MQLearner, self).__init__(*args, **kwargs) | ||||
|         assert self.n_agents == 1, 'M-DQN currently only supports single agent training' | ||||
|         self.temperature = temperature | ||||
|         self.alpha = alpha | ||||
|         self.clip0 = clip_l0 | ||||
|  | ||||
|     def tau_ln_pi(self, qs): | ||||
|         # computes log(softmax(qs/temperature)) | ||||
|         # Custom log-sum-exp trick from page 18 to compute the log-policy terms | ||||
|         v_k = qs.max(-1)[0].unsqueeze(-1) | ||||
|         advantage = qs - v_k | ||||
|         logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1) | ||||
|         tau_ln_pi = advantage - self.temperature * logsum | ||||
|         return tau_ln_pi | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|  | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|  | ||||
|             with torch.no_grad(): | ||||
|                 q_target_next = self.target_q_net(experience.next_observation) | ||||
|                 tau_log_pi_next = self.tau_ln_pi(q_target_next) | ||||
|  | ||||
|                 q_k_targets = self.target_q_net(experience.observation) | ||||
|                 log_pi = self.tau_ln_pi(q_k_targets) | ||||
|  | ||||
|                 pi_target = F.softmax(q_target_next / self.temperature, dim=-1) | ||||
|                 q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1) | ||||
|  | ||||
|                 munchausen_addon = log_pi.gather(-1, experience.action) | ||||
|  | ||||
|                 munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0)) | ||||
|  | ||||
|                 # Compute Q targets for current states | ||||
|                 m_q_target = munchausen_reward + q_target | ||||
|  | ||||
|             # Get expected Q values from local model | ||||
|             q_k = self.q_net(experience.observation) | ||||
|             pred_q = q_k.gather(-1, experience.action) | ||||
|  | ||||
|             # Compute loss | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2)) | ||||
|             self._backprop_loss(loss) | ||||
							
								
								
									
										144
									
								
								algorithms/q_learner.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										144
									
								
								algorithms/q_learner.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,144 @@ | ||||
| from typing import Union | ||||
| import gym | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import numpy as np | ||||
| from collections import deque | ||||
| from pathlib import Path | ||||
| import yaml | ||||
| from algorithms.common import BaseLearner, BaseBuffer, soft_update, Experience | ||||
|  | ||||
|  | ||||
| class QLearner(BaseLearner): | ||||
|     def __init__(self, q_net, target_q_net, env, buffer_size=1e5, target_update=3000, eps_end=0.05, n_agents=1, | ||||
|                  gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2, | ||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0, eps_start=1): | ||||
|         super(QLearner, self).__init__(env, n_agents, lr) | ||||
|         self.q_net = q_net | ||||
|         self.target_q_net = target_q_net | ||||
|         self.target_q_net.eval() | ||||
|         soft_update(self.q_net, self.target_q_net, tau=1.0) | ||||
|         self.buffer = BaseBuffer(buffer_size) | ||||
|         self.target_update = target_update | ||||
|         self.eps = eps_start | ||||
|         self.eps_start = eps_start | ||||
|         self.eps_end = eps_end | ||||
|         self.exploration_fraction = exploration_fraction | ||||
|         self.batch_size = batch_size | ||||
|         self.gamma = gamma | ||||
|         self.train_every_n_steps = train_every_n_steps | ||||
|         self.n_grad_steps = n_grad_steps | ||||
|         self.tau = tau | ||||
|         self.reg_weight = reg_weight | ||||
|         self.weight_decay = weight_decay | ||||
|         self.optimizer = torch.optim.AdamW(self.q_net.parameters(), | ||||
|                                            lr=self.lr, | ||||
|                                            weight_decay=self.weight_decay) | ||||
|         self.max_grad_norm = max_grad_norm | ||||
|         self.running_reward = deque(maxlen=5) | ||||
|         self.running_loss = deque(maxlen=5) | ||||
|         self.n_updates = 0 | ||||
|  | ||||
|     def save(self, path): | ||||
|         path = Path(path)  # no-op if already instance of Path | ||||
|         path.mkdir(parents=True, exist_ok=True) | ||||
|         hparams = {k: v for k, v in self.__dict__.items() if not(isinstance(v, BaseBuffer) or | ||||
|                                                                  isinstance(v, torch.optim.Optimizer) or | ||||
|                                                                  isinstance(v, gym.Env) or | ||||
|                                                                  isinstance(v, nn.Module)) | ||||
|                    } | ||||
|         hparams.update({'class': self.__class__.__name__}) | ||||
|         with (path / 'hparams.yaml').open('w') as outfile: | ||||
|             yaml.dump(hparams, outfile) | ||||
|         torch.save(self.q_net, path / 'q_net.pt') | ||||
|  | ||||
|     def anneal_eps(self, step, n_steps): | ||||
|         fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0) | ||||
|         self.eps = 1 + fraction * (self.eps_end - 1) | ||||
|  | ||||
|     def get_action(self, obs) -> Union[int, np.ndarray]: | ||||
|         o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs) | ||||
|         if np.random.rand() > self.eps: | ||||
|             action = self.q_net.act(o.float()) | ||||
|         else: | ||||
|             action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)]) | ||||
|         return action | ||||
|  | ||||
|     def learn(self, n_steps): | ||||
|         step = 0 | ||||
|         while step < n_steps: | ||||
|             obs, done = self.env.reset(), False | ||||
|             total_reward = 0 | ||||
|             while not done: | ||||
|  | ||||
|                 action = self.get_action(obs) | ||||
|  | ||||
|                 next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0]) | ||||
|  | ||||
|                 experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done)  # do we really need to copy? | ||||
|                 self.buffer.add(experience) | ||||
|                 # end of step routine | ||||
|                 obs = next_obs | ||||
|                 step += 1 | ||||
|                 total_reward += reward | ||||
|                 self.anneal_eps(step, n_steps) | ||||
|  | ||||
|                 if step % self.train_every_n_steps == 0: | ||||
|                     self.train() | ||||
|                     self.n_updates += 1 | ||||
|                 if step % self.target_update == 0: | ||||
|                     print('UPDATE') | ||||
|                     soft_update(self.q_net, self.target_q_net, tau=self.tau) | ||||
|  | ||||
|             self.running_reward.append(total_reward) | ||||
|             if step % 10 == 0: | ||||
|                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t' | ||||
|                       f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self.n_updates}') | ||||
|  | ||||
|     def _training_routine(self, obs, next_obs, action): | ||||
|         current_q_values = self.q_net(obs) | ||||
|         current_q_values = torch.gather(current_q_values, dim=-1, index=action) | ||||
|         next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach() | ||||
|         return current_q_values, next_q_values_raw | ||||
|  | ||||
|     def _backprop_loss(self, loss): | ||||
|         # log loss | ||||
|         self.running_loss.append(loss.item()) | ||||
|         # Optimize the model | ||||
|         self.optimizer.zero_grad() | ||||
|         loss.backward() | ||||
|         torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm) | ||||
|         self.optimizer.step() | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|             pred_q, target_q_raw = self._training_routine(experience.observation, | ||||
|                                                           experience.next_observation, | ||||
|                                                           experience.action) | ||||
|             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||
|             self._backprop_loss(loss) | ||||
|  | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|     from algorithms.common import BaseDDQN | ||||
|     from algorithms.vdn_learner import VDNLearner | ||||
|  | ||||
|     N_AGENTS = 1 | ||||
|  | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
|     move_props = MovementProperties(allow_diagonal_movement=True, | ||||
|                                     allow_square_movement=True, | ||||
|                                     allow_no_op=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True) | ||||
|  | ||||
|     dqn, target_dqn = BaseDDQN(), BaseDDQN() | ||||
|     learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10, | ||||
|                        train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     #learner.save(Path(__file__).parent / 'test' / 'testexperiment1337') | ||||
|     learner.learn(100000) | ||||
							
								
								
									
										23
									
								
								algorithms/vdn_learner.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								algorithms/vdn_learner.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,23 @@ | ||||
| import torch | ||||
| from algorithms.q_learner import QLearner | ||||
|  | ||||
|  | ||||
| class VDNLearner(QLearner): | ||||
|     def __init__(self, *args, **kwargs): | ||||
|         super(VDNLearner, self).__init__(*args, **kwargs) | ||||
|         assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead' | ||||
|  | ||||
|     def train(self): | ||||
|         if len(self.buffer) < self.batch_size: return | ||||
|         for _ in range(self.n_grad_steps): | ||||
|             experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps) | ||||
|             pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1)) | ||||
|             for agent_i in range(self.n_agents): | ||||
|                 q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i], | ||||
|                                                                      experience.next_observation[:, agent_i], | ||||
|                                                                      experience.action[:, agent_i].unsqueeze(-1)) | ||||
|                 pred_q += q_values | ||||
|                 target_q_raw += next_q_values_raw | ||||
|             target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw | ||||
|             loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2)) | ||||
|             self._backprop_loss(loss) | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue