Debugging

This commit is contained in:
Steffen Illium 2022-01-11 10:54:02 +01:00
parent 435056f373
commit 3150757347
6 changed files with 67 additions and 58 deletions

View File

@ -35,7 +35,7 @@ class BaseFactory(gym.Env):
@property
def named_action_space(self):
return {x.identifier.value: idx for idx, x in enumerate(self._actions.values())}
return {x.identifier: idx for idx, x in enumerate(self._actions.values())}
@property
def observation_space(self):
@ -287,7 +287,7 @@ class BaseFactory(gym.Env):
doors.tick_doors()
# Finalize
reward, reward_info = self.build_reward_result()
reward, reward_info = self.build_reward_result(rewards)
info.update(reward_info)
if self._steps >= self.max_steps:
@ -313,8 +313,8 @@ class BaseFactory(gym.Env):
if door is not None:
door.use()
valid = c.VALID
self.print(f'{agent.name} just used a door {door.name}')
info_dict = {f'{agent.name}_door_use_{door.name}': 1}
self.print(f'{agent.name} just used a {door.name} at {door.pos}')
info_dict = {f'{agent.name}_door_use': 1}
# When he doesn't...
else:
valid = c.NOT_VALID
@ -478,8 +478,7 @@ class BaseFactory(gym.Env):
return oobs
def get_all_tiles_with_collisions(self) -> List[Tile]:
tiles = [x.tile for y in self._entities for x in y if
y.can_collide and not isinstance(y, WallTiles) and x.can_collide and len(x.tile.guests) > 1]
tiles = [x for x in self[c.FLOOR] if len(x.guests_that_can_collide) > 1]
if False:
tiles_with_collisions = list()
for tile in self[c.FLOOR]:
@ -503,11 +502,11 @@ class BaseFactory(gym.Env):
else:
valid = c.NOT_VALID
self.print(f'{agent.name} just hit the wall at {agent.pos}.')
info_dict.update({f'{agent.pos}_wall_collide': 1})
info_dict.update({f'{agent.name}_wall_collide': 1})
else:
# Agent seems to be trying to Leave the level
self.print(f'{agent.name} tried to leave the level {agent.pos}.')
info_dict.update({f'{agent.pos}_wall_collide': 1})
info_dict.update({f'{agent.name}_wall_collide': 1})
reward_value = r.MOVEMENTS_VALID if valid else r.MOVEMENTS_FAIL
reward = {'value': reward_value, 'reason': action.identifier, 'info': info_dict}
return valid, reward
@ -554,7 +553,7 @@ class BaseFactory(gym.Env):
def additional_per_agent_rewards(self, agent) -> List[dict]:
return []
def build_reward_result(self) -> (int, dict):
def build_reward_result(self, global_env_rewards: list) -> (int, dict):
# Returns: Reward, Info
info = defaultdict(lambda: 0.0)
@ -584,12 +583,14 @@ class BaseFactory(gym.Env):
combined_info_dict = dict(combined_info_dict)
combined_info_dict.update(info)
global_reward_sum = sum(global_env_rewards)
if self.individual_rewards:
self.print(f"rewards are {comb_rewards}")
reward = list(comb_rewards.values())
reward = [x + global_reward_sum for x in reward]
return reward, combined_info_dict
else:
reward = sum(comb_rewards.values())
reward = sum(comb_rewards.values()) + global_reward_sum
self.print(f"reward is {reward}")
return reward, combined_info_dict

View File

@ -268,7 +268,7 @@ class DirtFactory(BaseFactory):
if __name__ == '__main__':
from environments.utility_classes import AgentRenderOptions as aro
render = False
render = True
dirt_props = DirtProperties(
initial_dirt_ratio=0.35,
@ -293,11 +293,11 @@ if __name__ == '__main__':
global_timings = []
for i in range(10):
factory = DirtFactory(n_agents=2, done_at_collision=False,
factory = DirtFactory(n_agents=4, done_at_collision=False,
level_name='rooms', max_steps=1000,
doors_have_area=False,
obs_prop=obs_props, parse_doors=True,
verbose=False,
verbose=True,
mv_prop=move_props, dirt_prop=dirt_props,
# inject_agents=[TSPDirtAgent],
)
@ -307,6 +307,7 @@ if __name__ == '__main__':
_ = factory.observation_space
obs_space = factory.observation_space
obs_space_named = factory.named_observation_space
action_space_named = factory.named_action_space
times = []
for epoch in range(10):
start_time = time.time()

View File

@ -78,12 +78,12 @@ class EnvActions:
class Rewards:
MOVEMENTS_VALID = -0.001
MOVEMENTS_FAIL = -0.001
NOOP = -0.1
USE_DOOR_VALID = -0.001
USE_DOOR_FAIL = -0.001
COLLISION = -1
MOVEMENTS_VALID = -0.01
MOVEMENTS_FAIL = -0.1
NOOP = -0.01
USE_DOOR_VALID = -0.01
USE_DOOR_FAIL = -0.1
COLLISION = -0.5
m = EnvActions
@ -120,7 +120,7 @@ class ObservationTranslator:
def translate_observation(self, agent_idx: int, obs: np.ndarray):
target_obs_space = self._per_agent_named_obs_space[agent_idx]
translation = [idx_space_dict['explained_idxs'] for name, idx_space_dict in target_obs_space.items()]
translation = [idx_space_dict for name, idx_space_dict in target_obs_space.items()]
flat_translation = [x for y in translation for x in y]
return np.take(obs, flat_translation, axis=1 if obs.ndim == 4 else 0)

View File

@ -22,6 +22,7 @@ if __name__ == '__main__':
record = False
seed = 67
n_agents = 1
# out_path = Path('study_out/e_1_new_reward/no_obs/dirt/A2C_new_reward/0_A2C_new_reward')
out_path = Path('study_out/single_run_with_export/dirt')
model_path = out_path
@ -49,7 +50,7 @@ if __name__ == '__main__':
rew, done_bool = 0, False
while not done_bool:
if n_agents > 1:
actions = [model.predict(env_state[model_idx], deterministic=True)[0]
actions = [model.predict(env_state[model_idx], deterministic=determin)[0]
for model_idx, model in enumerate(models)]
else:
actions = models[0].predict(env_state, deterministic=determin)[0]
@ -58,8 +59,6 @@ if __name__ == '__main__':
rew += step_r
if render:
env.render()
if not env.unwrapped.unwrapped[c.AGENT][0].temp_valid:
print('Invalid ACtions')
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')

View File

@ -1,7 +1,6 @@
import sys
from pathlib import Path
from matplotlib import pyplot as plt
import numpy as np
import itertools as it
try:
@ -16,8 +15,6 @@ except NameError:
DIR = None
pass
import time
import simplejson
from stable_baselines3.common.vec_env import SubprocVecEnv
@ -28,14 +25,12 @@ from environments.factory.factory_item import ItemProperties, ItemFactory
from environments.logging.envmonitor import EnvMonitor
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
import pickle
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
from plotting.compare_runs import compare_seed_runs, compare_model_runs
import pandas as pd
import seaborn as sns
import multiprocessing as mp
# mp.set_start_method("spawn")
"""
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
but never saw each other in training.
@ -72,7 +67,6 @@ n_agents = 4
ood_monitor_file = f'e_1_{n_agents}_agents'
baseline_monitor_file = 'e_1_baseline'
from stable_baselines3 import A2C
def policy_model_kwargs():
return dict() # gae_lambda=0.25, n_steps=16, max_grad_norm=0.25, use_rms_prop=True)
@ -198,7 +192,7 @@ if __name__ == '__main__':
ood_run = True
plotting = True
train_steps = 1e7
train_steps = 1e6
n_seeds = 3
frames_to_stack = 3
@ -222,7 +216,7 @@ if __name__ == '__main__':
max_spawn_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
dirt_smear_amount=0.0, agent_can_interact=True)
item_props = ItemProperties(n_items=10, agent_can_interact=True,
item_props = ItemProperties(n_items=10,
spawn_frequency=30, n_drop_off_locations=2,
max_agent_inventory_capacity=15)
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,

View File

@ -1,6 +1,8 @@
import sys
from pathlib import Path
from stable_baselines3.common.vec_env import SubprocVecEnv
try:
# noinspection PyUnboundLocalVariable
if __package__ is None:
@ -44,7 +46,7 @@ def load_model_run_baseline(policy_path, env_to_run):
# Load both agents
model = model_cls.load(policy_path / 'model.zip', device='cpu')
# Load old env kwargs
with next(policy_path.glob('*.json')).open('r') as f:
with next(policy_path.glob('*params.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(done_at_collision=True)
# Init Env
@ -103,8 +105,8 @@ def load_model_run_combined(root_path, env_to_run, env_kwargs):
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
recorded_env_factory.save_run(filepath=policy_path / f'monitor.pick')
recorded_env_factory.save_records(filepath=policy_path / f'recorder.json')
recorded_env_factory.save_run(filepath=root_path / f'monitor.pick')
recorded_env_factory.save_records(filepath=root_path / f'recorder.json')
if __name__ == '__main__':
@ -113,12 +115,15 @@ if __name__ == '__main__':
individual_run = True
combined_run = True
train_steps = 2e6
train_steps = 2e5
frames_to_stack = 3
# Define a global studi save path
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}'
def policy_model_kwargs():
return dict(learning_rate=0.0003, n_steps=10, gamma=0.95, gae_lambda=0.0, ent_coef=0.01, vf_coef=0.5)
# Define Global Env Parameters
# Define properties object parameters
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
@ -138,11 +143,11 @@ if __name__ == '__main__':
max_agent_inventory_capacity=15)
dest_props = DestProperties(n_dests=4, spawn_mode=DestModeOptions.GROUPED, spawn_frequency=1)
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,
level_name='rooms', doors_have_area=True,
level_name='rooms', doors_have_area=False,
verbose=False,
mv_prop=move_props,
obs_prop=obs_props,
done_at_collision=False
done_at_collision=True
)
# Bundle both environments with global kwargs and parameters
@ -172,23 +177,32 @@ if __name__ == '__main__':
continue
combination_path.mkdir(parents=True, exist_ok=True)
with env_class(**env_kwargs) as env_factory:
env_factory = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs)
for _ in range(6)], start_method="spawn")
param_path = combination_path / f'env_params.json'
try:
env_factory.env_method('save_params', param_path)
except AttributeError:
env_factory.save_params(param_path)
# EnvMonitor Init
callbacks = [EnvMonitor(env_factory)]
# Model Init
model = model_cls("MlpPolicy", env_factory,
model = model_cls("MlpPolicy", env_factory, **policy_model_kwargs(),
verbose=1, seed=69, device='cpu')
# Model train
model.learn(total_timesteps=int(train_steps), callback=callbacks)
# Model save
try:
model.named_action_space = env_factory.unwrapped.named_action_space
model.named_observation_space = env_factory.unwrapped.named_observation_space
except AttributeError:
model.named_action_space = env_factory.get_attr("named_action_space")[0]
model.named_observation_space = env_factory.get_attr("named_observation_space")[0]
save_path = combination_path / f'model.zip'
model.save(save_path)
@ -213,7 +227,7 @@ if __name__ == '__main__':
# for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_baseline(policy_path)
print('Start Individual Training')
print('Done Individual Recording')
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
if combined_run: