mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-22 14:56:43 +02:00
Debugging
This commit is contained in:
parent
435056f373
commit
3150757347
@ -35,7 +35,7 @@ class BaseFactory(gym.Env):
|
||||
|
||||
@property
|
||||
def named_action_space(self):
|
||||
return {x.identifier.value: idx for idx, x in enumerate(self._actions.values())}
|
||||
return {x.identifier: idx for idx, x in enumerate(self._actions.values())}
|
||||
|
||||
@property
|
||||
def observation_space(self):
|
||||
@ -287,7 +287,7 @@ class BaseFactory(gym.Env):
|
||||
doors.tick_doors()
|
||||
|
||||
# Finalize
|
||||
reward, reward_info = self.build_reward_result()
|
||||
reward, reward_info = self.build_reward_result(rewards)
|
||||
|
||||
info.update(reward_info)
|
||||
if self._steps >= self.max_steps:
|
||||
@ -313,8 +313,8 @@ class BaseFactory(gym.Env):
|
||||
if door is not None:
|
||||
door.use()
|
||||
valid = c.VALID
|
||||
self.print(f'{agent.name} just used a door {door.name}')
|
||||
info_dict = {f'{agent.name}_door_use_{door.name}': 1}
|
||||
self.print(f'{agent.name} just used a {door.name} at {door.pos}')
|
||||
info_dict = {f'{agent.name}_door_use': 1}
|
||||
# When he doesn't...
|
||||
else:
|
||||
valid = c.NOT_VALID
|
||||
@ -478,8 +478,7 @@ class BaseFactory(gym.Env):
|
||||
return oobs
|
||||
|
||||
def get_all_tiles_with_collisions(self) -> List[Tile]:
|
||||
tiles = [x.tile for y in self._entities for x in y if
|
||||
y.can_collide and not isinstance(y, WallTiles) and x.can_collide and len(x.tile.guests) > 1]
|
||||
tiles = [x for x in self[c.FLOOR] if len(x.guests_that_can_collide) > 1]
|
||||
if False:
|
||||
tiles_with_collisions = list()
|
||||
for tile in self[c.FLOOR]:
|
||||
@ -503,11 +502,11 @@ class BaseFactory(gym.Env):
|
||||
else:
|
||||
valid = c.NOT_VALID
|
||||
self.print(f'{agent.name} just hit the wall at {agent.pos}.')
|
||||
info_dict.update({f'{agent.pos}_wall_collide': 1})
|
||||
info_dict.update({f'{agent.name}_wall_collide': 1})
|
||||
else:
|
||||
# Agent seems to be trying to Leave the level
|
||||
self.print(f'{agent.name} tried to leave the level {agent.pos}.')
|
||||
info_dict.update({f'{agent.pos}_wall_collide': 1})
|
||||
info_dict.update({f'{agent.name}_wall_collide': 1})
|
||||
reward_value = r.MOVEMENTS_VALID if valid else r.MOVEMENTS_FAIL
|
||||
reward = {'value': reward_value, 'reason': action.identifier, 'info': info_dict}
|
||||
return valid, reward
|
||||
@ -554,7 +553,7 @@ class BaseFactory(gym.Env):
|
||||
def additional_per_agent_rewards(self, agent) -> List[dict]:
|
||||
return []
|
||||
|
||||
def build_reward_result(self) -> (int, dict):
|
||||
def build_reward_result(self, global_env_rewards: list) -> (int, dict):
|
||||
# Returns: Reward, Info
|
||||
info = defaultdict(lambda: 0.0)
|
||||
|
||||
@ -584,12 +583,14 @@ class BaseFactory(gym.Env):
|
||||
combined_info_dict = dict(combined_info_dict)
|
||||
combined_info_dict.update(info)
|
||||
|
||||
global_reward_sum = sum(global_env_rewards)
|
||||
if self.individual_rewards:
|
||||
self.print(f"rewards are {comb_rewards}")
|
||||
reward = list(comb_rewards.values())
|
||||
reward = [x + global_reward_sum for x in reward]
|
||||
return reward, combined_info_dict
|
||||
else:
|
||||
reward = sum(comb_rewards.values())
|
||||
reward = sum(comb_rewards.values()) + global_reward_sum
|
||||
self.print(f"reward is {reward}")
|
||||
return reward, combined_info_dict
|
||||
|
||||
|
@ -268,7 +268,7 @@ class DirtFactory(BaseFactory):
|
||||
|
||||
if __name__ == '__main__':
|
||||
from environments.utility_classes import AgentRenderOptions as aro
|
||||
render = False
|
||||
render = True
|
||||
|
||||
dirt_props = DirtProperties(
|
||||
initial_dirt_ratio=0.35,
|
||||
@ -293,11 +293,11 @@ if __name__ == '__main__':
|
||||
global_timings = []
|
||||
for i in range(10):
|
||||
|
||||
factory = DirtFactory(n_agents=2, done_at_collision=False,
|
||||
factory = DirtFactory(n_agents=4, done_at_collision=False,
|
||||
level_name='rooms', max_steps=1000,
|
||||
doors_have_area=False,
|
||||
obs_prop=obs_props, parse_doors=True,
|
||||
verbose=False,
|
||||
verbose=True,
|
||||
mv_prop=move_props, dirt_prop=dirt_props,
|
||||
# inject_agents=[TSPDirtAgent],
|
||||
)
|
||||
@ -307,6 +307,7 @@ if __name__ == '__main__':
|
||||
_ = factory.observation_space
|
||||
obs_space = factory.observation_space
|
||||
obs_space_named = factory.named_observation_space
|
||||
action_space_named = factory.named_action_space
|
||||
times = []
|
||||
for epoch in range(10):
|
||||
start_time = time.time()
|
||||
|
@ -78,12 +78,12 @@ class EnvActions:
|
||||
|
||||
class Rewards:
|
||||
|
||||
MOVEMENTS_VALID = -0.001
|
||||
MOVEMENTS_FAIL = -0.001
|
||||
NOOP = -0.1
|
||||
USE_DOOR_VALID = -0.001
|
||||
USE_DOOR_FAIL = -0.001
|
||||
COLLISION = -1
|
||||
MOVEMENTS_VALID = -0.01
|
||||
MOVEMENTS_FAIL = -0.1
|
||||
NOOP = -0.01
|
||||
USE_DOOR_VALID = -0.01
|
||||
USE_DOOR_FAIL = -0.1
|
||||
COLLISION = -0.5
|
||||
|
||||
|
||||
m = EnvActions
|
||||
@ -120,7 +120,7 @@ class ObservationTranslator:
|
||||
|
||||
def translate_observation(self, agent_idx: int, obs: np.ndarray):
|
||||
target_obs_space = self._per_agent_named_obs_space[agent_idx]
|
||||
translation = [idx_space_dict['explained_idxs'] for name, idx_space_dict in target_obs_space.items()]
|
||||
translation = [idx_space_dict for name, idx_space_dict in target_obs_space.items()]
|
||||
flat_translation = [x for y in translation for x in y]
|
||||
return np.take(obs, flat_translation, axis=1 if obs.ndim == 4 else 0)
|
||||
|
||||
|
@ -22,6 +22,7 @@ if __name__ == '__main__':
|
||||
record = False
|
||||
seed = 67
|
||||
n_agents = 1
|
||||
# out_path = Path('study_out/e_1_new_reward/no_obs/dirt/A2C_new_reward/0_A2C_new_reward')
|
||||
out_path = Path('study_out/single_run_with_export/dirt')
|
||||
model_path = out_path
|
||||
|
||||
@ -49,7 +50,7 @@ if __name__ == '__main__':
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
if n_agents > 1:
|
||||
actions = [model.predict(env_state[model_idx], deterministic=True)[0]
|
||||
actions = [model.predict(env_state[model_idx], deterministic=determin)[0]
|
||||
for model_idx, model in enumerate(models)]
|
||||
else:
|
||||
actions = models[0].predict(env_state, deterministic=determin)[0]
|
||||
@ -58,8 +59,6 @@ if __name__ == '__main__':
|
||||
rew += step_r
|
||||
if render:
|
||||
env.render()
|
||||
if not env.unwrapped.unwrapped[c.AGENT][0].temp_valid:
|
||||
print('Invalid ACtions')
|
||||
if done_bool:
|
||||
break
|
||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||
|
@ -1,7 +1,6 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
import itertools as it
|
||||
|
||||
try:
|
||||
@ -16,8 +15,6 @@ except NameError:
|
||||
DIR = None
|
||||
pass
|
||||
|
||||
import time
|
||||
|
||||
import simplejson
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
|
||||
@ -28,14 +25,12 @@ from environments.factory.factory_item import ItemProperties, ItemFactory
|
||||
from environments.logging.envmonitor import EnvMonitor
|
||||
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
|
||||
import pickle
|
||||
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
|
||||
from plotting.compare_runs import compare_seed_runs, compare_model_runs
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
|
||||
import multiprocessing as mp
|
||||
|
||||
# mp.set_start_method("spawn")
|
||||
|
||||
"""
|
||||
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
|
||||
but never saw each other in training.
|
||||
@ -72,10 +67,9 @@ n_agents = 4
|
||||
ood_monitor_file = f'e_1_{n_agents}_agents'
|
||||
baseline_monitor_file = 'e_1_baseline'
|
||||
|
||||
from stable_baselines3 import A2C
|
||||
|
||||
def policy_model_kwargs():
|
||||
return dict() # gae_lambda=0.25, n_steps=16, max_grad_norm=0.25, use_rms_prop=True)
|
||||
return dict() # gae_lambda=0.25, n_steps=16, max_grad_norm=0.25, use_rms_prop=True)
|
||||
|
||||
|
||||
def dqn_model_kwargs():
|
||||
@ -198,7 +192,7 @@ if __name__ == '__main__':
|
||||
ood_run = True
|
||||
plotting = True
|
||||
|
||||
train_steps = 1e7
|
||||
train_steps = 1e6
|
||||
n_seeds = 3
|
||||
frames_to_stack = 3
|
||||
|
||||
@ -222,7 +216,7 @@ if __name__ == '__main__':
|
||||
max_spawn_amount=0.1, max_global_amount=20,
|
||||
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
|
||||
dirt_smear_amount=0.0, agent_can_interact=True)
|
||||
item_props = ItemProperties(n_items=10, agent_can_interact=True,
|
||||
item_props = ItemProperties(n_items=10,
|
||||
spawn_frequency=30, n_drop_off_locations=2,
|
||||
max_agent_inventory_capacity=15)
|
||||
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,
|
||||
|
@ -1,6 +1,8 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
|
||||
try:
|
||||
# noinspection PyUnboundLocalVariable
|
||||
if __package__ is None:
|
||||
@ -44,7 +46,7 @@ def load_model_run_baseline(policy_path, env_to_run):
|
||||
# Load both agents
|
||||
model = model_cls.load(policy_path / 'model.zip', device='cpu')
|
||||
# Load old env kwargs
|
||||
with next(policy_path.glob('*.json')).open('r') as f:
|
||||
with next(policy_path.glob('*params.json')).open('r') as f:
|
||||
env_kwargs = simplejson.load(f)
|
||||
env_kwargs.update(done_at_collision=True)
|
||||
# Init Env
|
||||
@ -103,8 +105,8 @@ def load_model_run_combined(root_path, env_to_run, env_kwargs):
|
||||
if done_bool:
|
||||
break
|
||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||
recorded_env_factory.save_run(filepath=policy_path / f'monitor.pick')
|
||||
recorded_env_factory.save_records(filepath=policy_path / f'recorder.json')
|
||||
recorded_env_factory.save_run(filepath=root_path / f'monitor.pick')
|
||||
recorded_env_factory.save_records(filepath=root_path / f'recorder.json')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -113,12 +115,15 @@ if __name__ == '__main__':
|
||||
individual_run = True
|
||||
combined_run = True
|
||||
|
||||
train_steps = 2e6
|
||||
train_steps = 2e5
|
||||
frames_to_stack = 3
|
||||
|
||||
# Define a global studi save path
|
||||
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}'
|
||||
|
||||
def policy_model_kwargs():
|
||||
return dict(learning_rate=0.0003, n_steps=10, gamma=0.95, gae_lambda=0.0, ent_coef=0.01, vf_coef=0.5)
|
||||
|
||||
# Define Global Env Parameters
|
||||
# Define properties object parameters
|
||||
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
|
||||
@ -138,11 +143,11 @@ if __name__ == '__main__':
|
||||
max_agent_inventory_capacity=15)
|
||||
dest_props = DestProperties(n_dests=4, spawn_mode=DestModeOptions.GROUPED, spawn_frequency=1)
|
||||
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,
|
||||
level_name='rooms', doors_have_area=True,
|
||||
level_name='rooms', doors_have_area=False,
|
||||
verbose=False,
|
||||
mv_prop=move_props,
|
||||
obs_prop=obs_props,
|
||||
done_at_collision=False
|
||||
done_at_collision=True
|
||||
)
|
||||
|
||||
# Bundle both environments with global kwargs and parameters
|
||||
@ -172,33 +177,42 @@ if __name__ == '__main__':
|
||||
continue
|
||||
combination_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with env_class(**env_kwargs) as env_factory:
|
||||
param_path = combination_path / f'env_params.json'
|
||||
env_factory = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs)
|
||||
for _ in range(6)], start_method="spawn")
|
||||
|
||||
param_path = combination_path / f'env_params.json'
|
||||
try:
|
||||
env_factory.env_method('save_params', param_path)
|
||||
except AttributeError:
|
||||
env_factory.save_params(param_path)
|
||||
|
||||
# EnvMonitor Init
|
||||
callbacks = [EnvMonitor(env_factory)]
|
||||
# EnvMonitor Init
|
||||
callbacks = [EnvMonitor(env_factory)]
|
||||
|
||||
# Model Init
|
||||
model = model_cls("MlpPolicy", env_factory,
|
||||
verbose=1, seed=69, device='cpu')
|
||||
# Model Init
|
||||
model = model_cls("MlpPolicy", env_factory, **policy_model_kwargs(),
|
||||
verbose=1, seed=69, device='cpu')
|
||||
|
||||
# Model train
|
||||
model.learn(total_timesteps=int(train_steps), callback=callbacks)
|
||||
# Model train
|
||||
model.learn(total_timesteps=int(train_steps), callback=callbacks)
|
||||
|
||||
# Model save
|
||||
# Model save
|
||||
try:
|
||||
model.named_action_space = env_factory.unwrapped.named_action_space
|
||||
model.named_observation_space = env_factory.unwrapped.named_observation_space
|
||||
save_path = combination_path / f'model.zip'
|
||||
model.save(save_path)
|
||||
except AttributeError:
|
||||
model.named_action_space = env_factory.get_attr("named_action_space")[0]
|
||||
model.named_observation_space = env_factory.get_attr("named_observation_space")[0]
|
||||
save_path = combination_path / f'model.zip'
|
||||
model.save(save_path)
|
||||
|
||||
# Monitor Save
|
||||
callbacks[0].save_run(combination_path / 'monitor.pick')
|
||||
# Monitor Save
|
||||
callbacks[0].save_run(combination_path / 'monitor.pick')
|
||||
|
||||
# Better be save then sorry: Clean up!
|
||||
del env_factory, model
|
||||
import gc
|
||||
gc.collect()
|
||||
# Better be save then sorry: Clean up!
|
||||
del env_factory, model
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
# Train ends here ############################################################
|
||||
|
||||
@ -213,7 +227,7 @@ if __name__ == '__main__':
|
||||
|
||||
# for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
||||
# load_model_run_baseline(policy_path)
|
||||
print('Start Individual Training')
|
||||
print('Done Individual Recording')
|
||||
|
||||
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
|
||||
if combined_run:
|
||||
|
Loading…
x
Reference in New Issue
Block a user