Debugging

This commit is contained in:
Steffen Illium
2022-01-11 10:54:02 +01:00
parent 435056f373
commit 3150757347
6 changed files with 67 additions and 58 deletions

View File

@ -1,6 +1,8 @@
import sys
from pathlib import Path
from stable_baselines3.common.vec_env import SubprocVecEnv
try:
# noinspection PyUnboundLocalVariable
if __package__ is None:
@ -44,7 +46,7 @@ def load_model_run_baseline(policy_path, env_to_run):
# Load both agents
model = model_cls.load(policy_path / 'model.zip', device='cpu')
# Load old env kwargs
with next(policy_path.glob('*.json')).open('r') as f:
with next(policy_path.glob('*params.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(done_at_collision=True)
# Init Env
@ -103,8 +105,8 @@ def load_model_run_combined(root_path, env_to_run, env_kwargs):
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
recorded_env_factory.save_run(filepath=policy_path / f'monitor.pick')
recorded_env_factory.save_records(filepath=policy_path / f'recorder.json')
recorded_env_factory.save_run(filepath=root_path / f'monitor.pick')
recorded_env_factory.save_records(filepath=root_path / f'recorder.json')
if __name__ == '__main__':
@ -113,12 +115,15 @@ if __name__ == '__main__':
individual_run = True
combined_run = True
train_steps = 2e6
train_steps = 2e5
frames_to_stack = 3
# Define a global studi save path
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}'
def policy_model_kwargs():
return dict(learning_rate=0.0003, n_steps=10, gamma=0.95, gae_lambda=0.0, ent_coef=0.01, vf_coef=0.5)
# Define Global Env Parameters
# Define properties object parameters
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
@ -138,11 +143,11 @@ if __name__ == '__main__':
max_agent_inventory_capacity=15)
dest_props = DestProperties(n_dests=4, spawn_mode=DestModeOptions.GROUPED, spawn_frequency=1)
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,
level_name='rooms', doors_have_area=True,
level_name='rooms', doors_have_area=False,
verbose=False,
mv_prop=move_props,
obs_prop=obs_props,
done_at_collision=False
done_at_collision=True
)
# Bundle both environments with global kwargs and parameters
@ -172,33 +177,42 @@ if __name__ == '__main__':
continue
combination_path.mkdir(parents=True, exist_ok=True)
with env_class(**env_kwargs) as env_factory:
param_path = combination_path / f'env_params.json'
env_factory = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs)
for _ in range(6)], start_method="spawn")
param_path = combination_path / f'env_params.json'
try:
env_factory.env_method('save_params', param_path)
except AttributeError:
env_factory.save_params(param_path)
# EnvMonitor Init
callbacks = [EnvMonitor(env_factory)]
# EnvMonitor Init
callbacks = [EnvMonitor(env_factory)]
# Model Init
model = model_cls("MlpPolicy", env_factory,
verbose=1, seed=69, device='cpu')
# Model Init
model = model_cls("MlpPolicy", env_factory, **policy_model_kwargs(),
verbose=1, seed=69, device='cpu')
# Model train
model.learn(total_timesteps=int(train_steps), callback=callbacks)
# Model train
model.learn(total_timesteps=int(train_steps), callback=callbacks)
# Model save
# Model save
try:
model.named_action_space = env_factory.unwrapped.named_action_space
model.named_observation_space = env_factory.unwrapped.named_observation_space
save_path = combination_path / f'model.zip'
model.save(save_path)
except AttributeError:
model.named_action_space = env_factory.get_attr("named_action_space")[0]
model.named_observation_space = env_factory.get_attr("named_observation_space")[0]
save_path = combination_path / f'model.zip'
model.save(save_path)
# Monitor Save
callbacks[0].save_run(combination_path / 'monitor.pick')
# Monitor Save
callbacks[0].save_run(combination_path / 'monitor.pick')
# Better be save then sorry: Clean up!
del env_factory, model
import gc
gc.collect()
# Better be save then sorry: Clean up!
del env_factory, model
import gc
gc.collect()
# Train ends here ############################################################
@ -213,7 +227,7 @@ if __name__ == '__main__':
# for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_baseline(policy_path)
print('Start Individual Training')
print('Done Individual Recording')
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
if combined_run: