mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-22 14:56:43 +02:00
in progress
This commit is contained in:
parent
dbfa97aaba
commit
2589a06d02
@ -17,6 +17,32 @@ class MovementProperties(NamedTuple):
|
||||
allow_no_op: bool = False
|
||||
|
||||
|
||||
class Entity():
|
||||
|
||||
@property
|
||||
def pos(self):
|
||||
return self._pos
|
||||
|
||||
def __init__(self, pos):
|
||||
self._pos = pos
|
||||
|
||||
def check_agent_move(state: np.ndarray, dim: int, action: str):
|
||||
agent_slice = state[dim] # horizontal slice from state tensor
|
||||
agent_pos = np.argwhere(agent_slice == 1)
|
||||
if len(agent_pos) > 1:
|
||||
raise AssertionError('Only one agent per slice is allowed.')
|
||||
x, y = agent_pos[0]
|
||||
|
||||
# Actions
|
||||
x_diff, y_diff = ACTIONMAP[action]
|
||||
x_new = x + x_diff
|
||||
y_new = y + y_diff
|
||||
|
||||
|
||||
|
||||
return (x, y), (x_new, y_new), valid
|
||||
|
||||
|
||||
class AgentState:
|
||||
|
||||
def __init__(self, i: int, action: int):
|
||||
|
@ -1,3 +1,6 @@
|
||||
from collections import defaultdict
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
@ -11,6 +14,13 @@ IS_OCCUPIED_CELL = 1
|
||||
TO_BE_AVERAGED = ['dirt_amount', 'dirty_tiles']
|
||||
IGNORED_DF_COLUMNS = ['Episode', 'Run', 'train_step', 'step', 'index', 'dirt_amount', 'dirty_tile_count']
|
||||
|
||||
ACTIONMAP = defaultdict(lambda: (0, 0), dict(north=(-1, 0), east=(0, 1),
|
||||
south=(1, 0), west=(0, -1),
|
||||
north_east=(-1, +1), south_east=(1, 1),
|
||||
south_west=(+1, -1), north_west=(-1, -1)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# Utility functions
|
||||
def parse_level(path):
|
||||
@ -28,48 +38,19 @@ def one_hot_level(level, wall_char=WALL):
|
||||
return binary_grid
|
||||
|
||||
|
||||
def check_agent_move(state, dim, action):
|
||||
agent_slice = state[dim] # horizontal slice from state tensor
|
||||
agent_pos = np.argwhere(agent_slice == 1)
|
||||
if len(agent_pos) > 1:
|
||||
raise AssertionError('Only one agent per slice is allowed.')
|
||||
x, y = agent_pos[0]
|
||||
x_new, y_new = x, y
|
||||
# Actions
|
||||
if action == 0: # North
|
||||
x_new -= 1
|
||||
elif action == 1: # East
|
||||
y_new += 1
|
||||
elif action == 2: # South
|
||||
x_new += 1
|
||||
elif action == 3: # West
|
||||
y_new -= 1
|
||||
elif action == 4: # NE
|
||||
x_new -= 1
|
||||
y_new += 1
|
||||
elif action == 5: # SE
|
||||
x_new += 1
|
||||
y_new += 1
|
||||
elif action == 6: # SW
|
||||
x_new += 1
|
||||
y_new -= 1
|
||||
elif action == 7: # NW
|
||||
x_new -= 1
|
||||
y_new -= 1
|
||||
else:
|
||||
pass
|
||||
def check_position(state: np.ndarray, position_to_check: Tuple[int, int], dim: int = 0):
|
||||
x, y = position_to_check
|
||||
agent_slice = state[dim]
|
||||
|
||||
# Check if agent colides with grid boundrys
|
||||
valid = not (
|
||||
x_new < 0 or y_new < 0
|
||||
or x_new >= agent_slice.shape[0]
|
||||
or y_new >= agent_slice.shape[0]
|
||||
x < 0 or y < 0
|
||||
or x >= agent_slice.shape[0]
|
||||
or y >= agent_slice.shape[0]
|
||||
)
|
||||
|
||||
# Check for collision with level walls
|
||||
valid = valid and not state[LEVEL_IDX][x_new, y_new]
|
||||
|
||||
return (x, y), (x_new, y_new), valid
|
||||
valid = valid and not state[LEVEL_IDX][x, y]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
15
main.py
15
main.py
@ -35,8 +35,8 @@ def combine_runs(run_path: Union[str, PathLike]):
|
||||
df = df.fillna(0).rename(columns={'episode': 'Episode', 'run': 'Run'})
|
||||
columns = [col for col in df.columns if col not in IGNORED_DF_COLUMNS]
|
||||
|
||||
roll_n = 30
|
||||
skip_n = 20
|
||||
roll_n = 50
|
||||
skip_n = 40
|
||||
|
||||
non_overlapp_window = df.groupby(['Run', 'Episode']).rolling(roll_n, min_periods=1).mean()
|
||||
|
||||
@ -68,8 +68,8 @@ def compare_runs(run_path: Path, run_identifier: int, parameter: Union[str, List
|
||||
df = df.fillna(0).rename(columns={'episode': 'Episode', 'run': 'Run', 'model': 'Model'})
|
||||
columns = [col for col in df.columns if col in parameter]
|
||||
|
||||
roll_n = 30
|
||||
skip_n = 10
|
||||
roll_n = 40
|
||||
skip_n = 20
|
||||
|
||||
non_overlapp_window = df.groupby(['Model', 'Run', 'Episode']).rolling(roll_n, min_periods=1).mean()
|
||||
|
||||
@ -85,14 +85,15 @@ def compare_runs(run_path: Path, run_identifier: int, parameter: Union[str, List
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
compare_runs(Path('debug_out'), 1623052687, ['agent_0_vs_level'])
|
||||
compare_runs(Path('debug_out'), 1623052687, ['step_reward'])
|
||||
exit()
|
||||
|
||||
from stable_baselines3 import PPO, DQN, A2C
|
||||
from algorithms.reg_dqn import RegDQN
|
||||
# from sb3_contrib import QRDQN
|
||||
|
||||
dirt_props = DirtProperties()
|
||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||
max_local_amount=5, spawn_frequency=3)
|
||||
move_props = MovementProperties(allow_diagonal_movement=False,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False)
|
||||
@ -100,7 +101,7 @@ if __name__ == '__main__':
|
||||
|
||||
out_path = None
|
||||
|
||||
for modeL_type in [PPO, A2C, RegDQN, DQN]:
|
||||
for modeL_type in [PPO, A2C]: # , RegDQN, DQN]:
|
||||
for seed in range(3):
|
||||
|
||||
env = SimpleFactory(n_agents=1, dirt_properties=dirt_props, pomdp_radius=3, max_steps=400,
|
||||
|
@ -28,7 +28,7 @@ if __name__ == '__main__':
|
||||
this_model = model_files[0]
|
||||
|
||||
model = PPO.load(this_model)
|
||||
evaluation_result = evaluate_policy(model, env, n_eval_episodes=100, deterministic=True, render=True)
|
||||
evaluation_result = evaluate_policy(model, env, n_eval_episodes=100, deterministic=False, render=True)
|
||||
print(evaluation_result)
|
||||
|
||||
env.close()
|
||||
|
Loading…
x
Reference in New Issue
Block a user