Monitor Class

This commit is contained in:
steffen-illium
2021-05-14 11:54:59 +02:00
parent 86204a6266
commit 18be35dc19
3 changed files with 89 additions and 30 deletions

View File

@ -1,9 +1,10 @@
from collections import defaultdict
from typing import List
import numpy as np
from attr import dataclass
from environments.factory.base_factory import BaseFactory
from collections import namedtuple
from typing import Iterable
from environments.factory.base_factory import BaseFactory, AgentState
from environments import helpers as h
DIRT_INDEX = -1
@ -16,9 +17,8 @@ class DirtProperties:
class GettingDirty(BaseFactory):
@property
def _clean_up_action(self):
return self.movement_actions + 1 - 1
def _is_clean_up_action(self, action):
return self.movement_actions + 1 - 1 == action
def __init__(self, *args, dirt_properties: DirtProperties, **kwargs):
self._dirt_properties = dirt_properties
@ -43,16 +43,20 @@ class GettingDirty(BaseFactory):
self.state[DIRT_INDEX][pos] = max(new_dirt_amount, h.IS_FREE_CELL)
return pos, cleanup_was_sucessfull
def additional_actions(self, agent_i, action) -> ((int, int), bool):
def additional_actions(self, agent_i: int, action: int) -> ((int, int), bool):
if action != self._is_moving_action(action):
if action == self._clean_up_action:
if self._is_clean_up_action(action):
agent_i_pos = self.agent_i_position(agent_i)
_, valid = self.clean_up(agent_i_pos)
if valid:
print(f'Agent {agent_i} did just clean up some dirt at {agent_i_pos}.')
self.monitor.add('dirt_cleaned', self._dirt_properties.clean_amount)
else:
print(f'Agent {agent_i} just tried to clean up some dirt at {agent_i_pos}, but was unsucsessfull.')
self.monitor.add('failed_attempts', 1)
return agent_i_pos, valid
else:
raise RuntimeError('This should not happen!!!')
else:
raise RuntimeError('This should not happen!!!')
@ -63,18 +67,26 @@ class GettingDirty(BaseFactory):
self.state = np.concatenate((self.state, dirt_slice)) # dirt is now the last slice
self.spawn_dirt()
def calculate_reward(self, collisions_vecs: np.ndarray, actions: Iterable[int]) -> (int, dict):
for agent_i, cols in enumerate(collisions_vecs):
cols = np.argwhere(cols != 0).flatten()
print(f't = {self.steps}\tAgent {agent_i} has collisions with '
f'{[self.slice_strings[entity] for entity in cols if entity != self.state.shape[0]]}')
return 0, {}
def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
this_step_reward = 0
for agent_state in agent_states:
collisions = agent_state.collisions
print(f't = {self.steps}\tAgent {agent_state.i} has collisions with '
f'{[self.slice_strings[entity] for entity in collisions if entity != self.string_slices["dirt"]]}')
if self._is_clean_up_action(agent_state.action) and agent_state.action_valid:
this_step_reward += 1
self.monitor.set('dirt_amount', self.state[DIRT_INDEX].sum())
self.monitor.set('dirty_tiles', len(np.nonzero(self.state[DIRT_INDEX])))
return this_step_reward, {}
if __name__ == '__main__':
import random
dirt_props = DirtProperties()
factory = GettingDirty(n_agents=1, dirt_properties=dirt_props)
random_actions = [random.randint(0, 8) for _ in range(200)]
for action in random_actions:
state, r, done, _ = factory.step(action)
random_actions = [random.randint(0, 8) for _ in range(2000)]
for random_action in random_actions:
state, r, done, _ = factory.step(random_action)
print(f'Factory run done, reward is:\n {r}')
print(f'The following running stats have been recorded:\n{dict(factory.monitor)}')