diff --git a/environments/factory/base_factory.py b/environments/factory/base_factory.py index faf99fd..4ac7b0d 100644 --- a/environments/factory/base_factory.py +++ b/environments/factory/base_factory.py @@ -1,22 +1,21 @@ -import random -from typing import Tuple, List, Union, Iterable +from collections import defaultdict +from typing import List import numpy as np from pathlib import Path -from attr import dataclass - from environments import helpers as h -@dataclass class AgentState: - i: int - action: int - pos = None - collision_vector = None - action_valid = None + def __init__(self, i: int, action: int): + self.i = i + self.action = action + + self.pos = None + self.collision_vector = None + self.action_valid = None @property def collisions(self): @@ -30,12 +29,51 @@ class AgentState: raise AttributeError(f'"{key}" cannot be updated, this attr is not a part of {self.__class__.__name__}') +class FactoryMonitor: + + def __init__(self, env): + self._env = env + self._monitor = defaultdict(lambda: defaultdict(lambda: 0)) + + def __iter__(self): + for key, value in self._monitor.items(): + yield key, dict(value) + + def add(self, key, value, step=None): + assert step is None or step >= 1 # Is this good practice? + step = step or self._env.steps + self._monitor[key][step] = list(self._monitor[key].values())[-1] + value + return self._monitor[key][step] + + def set(self, key, value, step=None): + assert step is None or step >= 1 # Is this good practice? + step = step or self._env.steps + self._monitor[key][step] = value + return self._monitor[key][step] + + def reduce(self, key, value, step=None): + assert step is None or step >= 1 # Is this good practice? + step = step or self._env.steps + self._monitor[key][step] = list(self._monitor[key].values())[-1] - value + + def to_dict(self): + return dict(self) + + def to_pd_dataframe(self): + import pandas as pd + return pd.DataFrame.from_dict(self.to_dict()) + + class BaseFactory: @property def movement_actions(self): return (int(self.allow_vertical_movement) + int(self.allow_horizontal_movement)) * 4 + @property + def string_slices(self): + return {value: key for key, value in self.slice_strings.items()} + def __init__(self, level='simple', n_agents=1, max_steps=1e3): self.n_agents = n_agents self.max_steps = max_steps @@ -45,11 +83,13 @@ class BaseFactory: h.parse_level(Path(__file__).parent / h.LEVELS_DIR / f'{level}.txt') ) self.slice_strings = {0: 'level', **{i: f'agent#{i}' for i in range(1, self.n_agents+1)}} + self.monitor = FactoryMonitor(self) self.reset() def reset(self): self.done = False self.steps = 0 + self.cumulative_reward = 0 # Agent placement ... agents = np.zeros((self.n_agents, *self.level.shape), dtype=np.int8) floor_tiles = np.argwhere(self.level == h.IS_FREE_CELL) @@ -62,7 +102,7 @@ class BaseFactory: # Returns State, Reward, Done, Info return self.state, 0, self.done, {} - def additional_actions(self, agent_i, action) -> ((int, int), bool): + def additional_actions(self, agent_i: int, action: int) -> ((int, int), bool): raise NotImplementedError def step(self, actions): @@ -86,10 +126,11 @@ class BaseFactory: states[i].update(collision_vector=collision_vec) reward, info = self.calculate_reward(states) + self.cumulative_reward += reward if self.steps >= self.max_steps: self.done = True - return self.state, reward, self.done, info + return self.state, self.cumulative_reward, self.done, info def _is_moving_action(self, action): if action < self.movement_actions: diff --git a/environments/factory/simple_factory.py b/environments/factory/simple_factory.py index c0ccc79..3c2d495 100644 --- a/environments/factory/simple_factory.py +++ b/environments/factory/simple_factory.py @@ -22,8 +22,11 @@ class SimpleFactory(BaseFactory): def calculate_reward(self, agent_states): for agent_state in agent_states: collisions = agent_state.collisions + entities = [self.slice_strings[entity] for entity in collisions] + for entity in entities: + self.monitor.add(f'{entity}_collisions', 1) print(f't = {self.steps}\tAgent {agent_state.i} has collisions with ' - f'{[self.slice_strings[entity] for entity in collisions]}') + f'{entities}') return 0, {} @@ -33,3 +36,6 @@ if __name__ == '__main__': random_actions = [random.randint(0, 7) for _ in range(200)] for action in random_actions: state, r, done, _ = factory.step(action) + print(f'Factory run done, reward is:\n {r}') + print(f'There have been the following collisions: \n {dict(factory.monitor)}') + diff --git a/environments/factory/simple_factory_getting_dirty.py b/environments/factory/simple_factory_getting_dirty.py index d0a542a..1062091 100644 --- a/environments/factory/simple_factory_getting_dirty.py +++ b/environments/factory/simple_factory_getting_dirty.py @@ -1,9 +1,10 @@ +from collections import defaultdict +from typing import List + import numpy as np from attr import dataclass -from environments.factory.base_factory import BaseFactory -from collections import namedtuple -from typing import Iterable +from environments.factory.base_factory import BaseFactory, AgentState from environments import helpers as h DIRT_INDEX = -1 @@ -16,9 +17,8 @@ class DirtProperties: class GettingDirty(BaseFactory): - @property - def _clean_up_action(self): - return self.movement_actions + 1 - 1 + def _is_clean_up_action(self, action): + return self.movement_actions + 1 - 1 == action def __init__(self, *args, dirt_properties: DirtProperties, **kwargs): self._dirt_properties = dirt_properties @@ -43,16 +43,20 @@ class GettingDirty(BaseFactory): self.state[DIRT_INDEX][pos] = max(new_dirt_amount, h.IS_FREE_CELL) return pos, cleanup_was_sucessfull - def additional_actions(self, agent_i, action) -> ((int, int), bool): + def additional_actions(self, agent_i: int, action: int) -> ((int, int), bool): if action != self._is_moving_action(action): - if action == self._clean_up_action: + if self._is_clean_up_action(action): agent_i_pos = self.agent_i_position(agent_i) _, valid = self.clean_up(agent_i_pos) if valid: print(f'Agent {agent_i} did just clean up some dirt at {agent_i_pos}.') + self.monitor.add('dirt_cleaned', self._dirt_properties.clean_amount) else: print(f'Agent {agent_i} just tried to clean up some dirt at {agent_i_pos}, but was unsucsessfull.') + self.monitor.add('failed_attempts', 1) return agent_i_pos, valid + else: + raise RuntimeError('This should not happen!!!') else: raise RuntimeError('This should not happen!!!') @@ -63,18 +67,26 @@ class GettingDirty(BaseFactory): self.state = np.concatenate((self.state, dirt_slice)) # dirt is now the last slice self.spawn_dirt() - def calculate_reward(self, collisions_vecs: np.ndarray, actions: Iterable[int]) -> (int, dict): - for agent_i, cols in enumerate(collisions_vecs): - cols = np.argwhere(cols != 0).flatten() - print(f't = {self.steps}\tAgent {agent_i} has collisions with ' - f'{[self.slice_strings[entity] for entity in cols if entity != self.state.shape[0]]}') - return 0, {} + def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict): + this_step_reward = 0 + for agent_state in agent_states: + collisions = agent_state.collisions + print(f't = {self.steps}\tAgent {agent_state.i} has collisions with ' + f'{[self.slice_strings[entity] for entity in collisions if entity != self.string_slices["dirt"]]}') + if self._is_clean_up_action(agent_state.action) and agent_state.action_valid: + this_step_reward += 1 + + self.monitor.set('dirt_amount', self.state[DIRT_INDEX].sum()) + self.monitor.set('dirty_tiles', len(np.nonzero(self.state[DIRT_INDEX]))) + return this_step_reward, {} if __name__ == '__main__': import random dirt_props = DirtProperties() factory = GettingDirty(n_agents=1, dirt_properties=dirt_props) - random_actions = [random.randint(0, 8) for _ in range(200)] - for action in random_actions: - state, r, done, _ = factory.step(action) + random_actions = [random.randint(0, 8) for _ in range(2000)] + for random_action in random_actions: + state, r, done, _ = factory.step(random_action) + print(f'Factory run done, reward is:\n {r}') + print(f'The following running stats have been recorded:\n{dict(factory.monitor)}')