Individual Rewards

This commit is contained in:
Steffen Illium
2021-11-16 12:14:11 +01:00
parent b6bda84033
commit 0fe90f3ac0
11 changed files with 130 additions and 108 deletions

View File

@ -2,6 +2,7 @@ import sys
from pathlib import Path
from matplotlib import pyplot as plt
import numpy as np
import itertools as it
try:
# noinspection PyUnboundLocalVariable
@ -70,7 +71,7 @@ baseline_monitor_file = 'e_1_baseline_monitor.pick'
def policy_model_kwargs():
return dict(ent_coef=0.05)
return dict()
def dqn_model_kwargs():
@ -100,6 +101,7 @@ def load_model_run_baseline(seed_path, env_to_run):
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(done_at_collision=True)
# Monitor Init
with MonitorCallback(filepath=seed_path / baseline_monitor_file) as monitor:
# Init Env
@ -134,6 +136,7 @@ def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
env_kwargs = simplejson.load(f)
env_kwargs.update(
n_agents=n_agents,
done_at_collision=True,
**additional_kwargs_dict.get('post_training_kwargs', {}))
# Monitor Init
with MonitorCallback(filepath=seed_path / ood_monitor_file) as monitor:
@ -168,6 +171,31 @@ def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
gc.collect()
def start_mp_study_run(envs_map, policies_path):
paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / ood_monitor_file).exists())
if paths:
import multiprocessing as mp
pool = mp.Pool(mp.cpu_count())
print("Starting MP with: ", pool._processes, " Processes")
_ = pool.starmap(load_model_run_study,
it.product(paths,
(envs_map[policies_path.parent.name][0],),
(observation_modes[policies_path.parent.parent.name],))
)
def start_mp_baseline_run(envs_map, policies_path):
paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / baseline_monitor_file).exists())
if paths:
import multiprocessing as mp
pool = mp.Pool(mp.cpu_count())
print("Starting MP with: ", pool._processes, " Processes")
_ = pool.starmap(load_model_run_baseline,
it.product(paths,
(envs_map[policies_path.parent.name][0],))
)
if __name__ == '__main__':
train_steps = 5e6
n_seeds = 3
@ -215,75 +243,74 @@ if __name__ == '__main__':
# Define parameter versions according with #1,2[1,0,N],3
observation_modes = {}
if False:
observation_modes.update({
'seperate_1': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=1,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_0': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=0,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_N': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder='N',
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'in_lvl_obs': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.LEVEL,
omit_agent_self=True,
additional_agent_placeholder=None,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_1': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=1,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_0': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=0,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_N': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder='N',
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'in_lvl_obs': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.LEVEL,
omit_agent_self=True,
additional_agent_placeholder=None,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
# No further adjustment needed
'no_obs': dict(
@ -398,15 +425,7 @@ if __name__ == '__main__':
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
# Iteration
paths = list(y for y in policy_path.iterdir() if y.is_dir() \
and not (y / baseline_monitor_file).exists())
import multiprocessing as mp
import itertools as it
pool = mp.Pool(mp.cpu_count())
result = pool.starmap(load_model_run_baseline,
it.product(paths,
(env_map[env_path.name][0],))
)
start_mp_baseline_run(env_map, policy_path)
# for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_baseline(seed_path)
@ -424,18 +443,9 @@ if __name__ == '__main__':
# First seed path version
# seed_path = next((y for y in policy_path.iterdir() if y.is_dir()))
# Iteration
import multiprocessing as mp
import itertools as it
pool = mp.Pool(mp.cpu_count())
paths = list(y for y in policy_path.iterdir() if y.is_dir() \
and not (y / ood_monitor_file).exists())
# result = pool.starmap(load_model_run_study,
# it.product(paths,
# (env_map[env_path.name][0],),
# (observation_modes[obs_mode],))
# )
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
load_model_run_study(seed_path, env_map[env_path.name][0], observation_modes[obs_mode])
start_mp_study_run(env_map, policy_path)
#for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_study(seed_path, env_map[env_path.name][0], observation_modes[obs_mode])
print('OOD Tracking Done')
# Plotting
@ -497,15 +507,16 @@ if __name__ == '__main__':
# df_melted["Measurements"] = df_melted["Measurement"] + " " + df_melted["monitor"]
# Plotting
fig, ax = plt.subplots(figsize=(11.7, 8.27))
# fig, ax = plt.subplots(figsize=(11.7, 8.27))
c = sns.catplot(data=df_melted[df_melted['obs_mode'] == observation_folder.name],
x='Measurement', hue='monitor', row='model', col='env', y='Score',
sharey=False, kind="box", height=4, aspect=.7, legend_out=True,
sharey=False, kind="box", height=4, aspect=.7, legend_out=False, legend=False,
showfliers=False)
c.set_xticklabels(rotation=65, horizontalalignment='right')
c.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
# c.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
c.fig.suptitle(f"Cat plot for {observation_folder.name}")
plt.tight_layout(pad=2)
# plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.tight_layout()
plt.savefig(study_root_path / f'results_{n_agents}_agents_{observation_folder.name}.png')
pass