initial n steps

This commit is contained in:
Steffen Illium 2023-11-23 17:32:32 +01:00
parent 2f29ef703c
commit 0ec260f6a2
8 changed files with 92 additions and 24 deletions

View File

@ -35,24 +35,17 @@ Entities:
# We need a special spawn rule...
spawnrule:
# ...which assigns the destinations per agent
SpawnDestinationsPerAgent:
# we use this parameter
coords_or_quantity:
# to enable and assign special positions per agent
Wolfgang: 1
Karl-Heinz: 1
Kevin: 1
Juergen: 1
Soeren: 1
Walter: 1
Siggi: 1
Dennis: 1
SpawnDestinationOnAgent: {}
Rules:
# Utilities
WatchCollisions:
done_at_collisions: false
# Initial random walk
DoRandomInitialSteps:
random_steps: 10
# Done Conditions
DoneAtDestinationReach:
condition: simultanious

View File

@ -136,6 +136,7 @@ class Factory(gym.Env):
# All is set up, trigger entity spawn with variable pos
self.state.rules.do_all_reset(self.state)
self.state.rules.do_all_post_spawn_reset(self.state)
# Build initial observations for all agents
self.obs_builder.reset(self.state)

View File

@ -4,15 +4,17 @@ from random import shuffle
from typing import Dict
from marl_factory_grid.environment.groups.objects import Objects
from marl_factory_grid.utils.helpers import POS_MASK
from marl_factory_grid.utils.helpers import POS_MASK_8, POS_MASK_4
class Entities(Objects):
_entity = Objects
@staticmethod
def neighboring_positions(pos):
return [tuple(x) for x in (POS_MASK + pos).reshape(-1, 2)]
def neighboring_positions(self, pos):
return [tuple(x) for x in (POS_MASK_8 + pos).reshape(-1, 2) if tuple(x) in self._floor_positions]
def neighboring_4_positions(self, pos):
return [tuple(x) for x in (POS_MASK_4 + pos) if tuple(x) in self._floor_positions]
def get_entities_near_pos(self, pos):
return [y for x in itemgetter(*self.neighboring_positions(pos))(self.pos_dict) for y in x]

View File

@ -1,7 +1,10 @@
import abc
import random
from random import shuffle
from typing import List, Collection
import numpy as np
from marl_factory_grid.environment import rewards as r, constants as c
from marl_factory_grid.environment.entity.agent import Agent
from marl_factory_grid.utils import helpers as h
@ -37,6 +40,15 @@ class Rule(abc.ABC):
TODO
:return:
"""
return []
def on_reset_post_spawn(self, state) -> List[TickResult]:
"""
TODO
:return:
"""
return []
@ -230,3 +242,33 @@ class WatchCollisions(Rule):
if inter_entity_collision_detected or collision_in_step:
return [DoneResult(validity=c.VALID, identifier=c.COLLISION, reward=self.reward_at_done)]
return []
class DoRandomInitialSteps(Rule):
def __init__(self, random_steps: 10):
"""
Special rule which spawns destinations, that are bound to a single agent a fixed set of positions.
Useful for introducing specialists, etc. ..
!!! This rule does not introduce any reward or done condition.
:param random_steps: Number of random steps agents perform in an environment.
Useful in the `N-Puzzle` configuration.
"""
super().__init__()
self.random_steps = random_steps
def on_reset_post_spawn(self, state):
state.print("Random Initial Steps initiated....")
for _ in range(self.random_steps):
# Find free positions
free_pos = state.random_free_position
neighbor_positions = state.entities.neighboring_4_positions(free_pos)
random.shuffle(neighbor_positions)
chosen_agent = h.get_first(state[c.AGENT].by_pos(neighbor_positions.pop()))
assert isinstance(chosen_agent, Agent)
valid = chosen_agent.move(free_pos, state)
valid_str = " not" if not valid else ""
state.print(f"Move {chosen_agent.name} from {chosen_agent.last_pos} "
f"to {chosen_agent.pos} was{valid_str} valid.")
pass

View File

@ -105,10 +105,10 @@ class SpawnDestinationsPerAgent(Rule):
!!! This rule does not introduce any reward or done condition.
:param coords_or_quantity: Please provide a dictionary with agent names as keys; and a list of possible
destination coords as value. Example: {Wolfgang: [(0, 0), (1, 1), ...]}
:param coords_or_quantity: Please provide a dictionary with agent names as keys; and a list of possible
destination coords as value. Example: {Wolfgang: [(0, 0), (1, 1), ...]}
"""
super(Rule, self).__init__()
super().__init__()
self.per_agent_positions = dict()
for agent_name, value in coords_or_quantity.items():
if isinstance(value, int):
@ -143,3 +143,25 @@ class SpawnDestinationsPerAgent(Rule):
continue
state[d.DESTINATION].add_item(destination)
pass
class SpawnDestinationOnAgent(Rule):
def __init__(self):
"""
Special rule which spawns a single destination bound to a single agent just `below` him. Usefull for
the `N-Puzzle` configurations.
!!! This rule does not introduce any reward or done condition.
:param coords_or_quantity: Please provide a dictionary with agent names as keys; and a list of possible
destination coords as value. Example: {Wolfgang: [(0, 0), (1, 1), ...]}
"""
super().__init__()
def on_reset(self, state: Gamestate):
state.print("Spawn Desitnations")
for agent in state[c.AGENT]:
destination = Destination(agent.pos, bind_to=agent)
state[d.DESTINATION].add_item(destination)
assert len(state[d.DESTINATION].by_pos(agent.pos)) == 1
pass

View File

@ -27,9 +27,11 @@ IGNORED_DF_COLUMNS = ['Episode', 'Run', # For plotting, which values are ignore
'train_step', 'step', 'index', 'dirt_amount', 'dirty_pos_count', 'terminal_observation',
'episode']
POS_MASK = np.asarray([[[-1, -1], [0, -1], [1, -1]],
[[-1, 0], [0, 0], [1, 0]],
[[-1, 1], [0, 1], [1, 1]]])
POS_MASK_8 = np.asarray([[[-1, -1], [0, -1], [1, -1]],
[[-1, 0], [0, 0], [1, 0]],
[[-1, 1], [0, 1], [1, 1]]])
POS_MASK_4 = np.asarray([[0, -1], [-1, 0], [1, 0], [-1, 1], [0, 1], [1, 1]])
MOVEMAP = defaultdict(lambda: (0, 0),
{c.NORTH: (-1, 0), c.NORTHEAST: (-1, 1),

View File

@ -47,6 +47,12 @@ class StepRules:
state.print(rule_reset_printline)
return c.VALID
def do_all_post_spawn_reset(self, state):
for rule in self.rules:
if rule_reset_printline := rule.on_reset_post_spawn(state):
state.print(rule_reset_printline)
return c.VALID
def tick_step_all(self, state):
results = list()
for rule in self.rules:

View File

@ -26,10 +26,10 @@ if __name__ == '__main__':
if explain_config:
ce = ConfigExplainer()
ce.save_all(run_path / 'all_out.yaml')
ce.save_all(run_path / 'all_available_configs.yaml')
# Path to config File
path = Path('marl_factory_grid/configs/clean_and_bring.yaml')
path = Path('marl_factory_grid/configs/eight_puzzle.yaml')
# Env Init
factory = Factory(path)