mirror of
				https://github.com/illiumst/marl-factory-grid.git
				synced 2025-10-31 12:37:27 +01:00 
			
		
		
		
	added own dqn
This commit is contained in:
		| @@ -50,11 +50,11 @@ class BaseDQN(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(BaseDQN, self).__init__() | ||||
|         self.net = nn.Sequential( | ||||
|             nn.Linear(5 * 5 * 3, 64), | ||||
|             nn.Tanh(), | ||||
|             nn.Linear(64, 64), | ||||
|             nn.Tanh(), | ||||
|             nn.Linear(64, 5) | ||||
|             nn.Linear(3*5*5, 64), | ||||
|             nn.ReLU(), | ||||
|             nn.Linear(64,  64), | ||||
|             nn.ReLU(), | ||||
|             nn.Linear(64, 9) | ||||
|         ) | ||||
|  | ||||
|     def act(self, x): | ||||
| @@ -70,14 +70,15 @@ class BaseDQN(nn.Module): | ||||
|  | ||||
|  | ||||
| class BaseQlearner: | ||||
|     def __init__(self, q_net, target_q_net, env, buffer, n_steps, target_update, warmup, eps_end, | ||||
|                  gamma=0.99, train_every_n_steps=4, exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0): | ||||
|     def __init__(self, q_net, target_q_net, env, buffer, target_update, warmup, eps_end, | ||||
|                  gamma=0.99, train_every_n_steps=4, n_grad_steps=1, | ||||
|                  exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0): | ||||
|         self.q_net = q_net | ||||
|         self.target_q_net = target_q_net | ||||
|         self.target_q_net.load_state_dict(self.q_net.state_dict()) | ||||
|         self.target_q_net.eval() | ||||
|         self.env = env | ||||
|         self.buffer = buffer | ||||
|         self.n_steps = n_steps | ||||
|         self.target_update = target_update | ||||
|         self.warmup = warmup | ||||
|         self.eps = 1. | ||||
| @@ -86,65 +87,79 @@ class BaseQlearner: | ||||
|         self.batch_size = batch_size | ||||
|         self.gamma = gamma | ||||
|         self.train_every_n_steps = train_every_n_steps | ||||
|         self.n_grad_steps = n_grad_steps | ||||
|         self.lr = lr | ||||
|         self.reg_weight = reg_weight | ||||
|         self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr) | ||||
|         self.device = 'cpu' | ||||
|         self.running_reward = deque(maxlen=10) | ||||
|         self.running_loss = deque(maxlen=10) | ||||
|  | ||||
|     def to(self, device): | ||||
|         self.device = device | ||||
|         return self | ||||
|  | ||||
|     def anneal_eps(self, step): | ||||
|         fraction = min(float(step) / int(self.exploration_fraction*self.n_steps), 1.0) | ||||
|         self.eps = 1 + fraction * (self.eps_end - 1) | ||||
|     def anneal_eps(self, step, n_steps): | ||||
|         fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0) | ||||
|         eps = 1 + fraction * (self.eps_end - 1) | ||||
|         return eps | ||||
|  | ||||
|     def learn(self): | ||||
|         step = 0 | ||||
|         while step < self.n_steps: | ||||
|     def learn(self, n_steps): | ||||
|         step, eps = 0, 1 | ||||
|         while step < n_steps: | ||||
|             obs, done = self.env.reset(), False | ||||
|             total_reward = 0 | ||||
|             while not done: | ||||
|                 action = self.q_net.random_action() if np.random.rand() < self.eps \ | ||||
|                     else self.q_net.act(torch.from_numpy(obs).unsqueeze(0).float()) | ||||
|                 next_obs, reward, done, info = env.step(action) | ||||
|                 print(action, reward) | ||||
|                 experience = Experience(obs.copy(), next_obs.copy(), action, reward, done)  # do we really need to copy? | ||||
|                 obs = next_obs | ||||
|                 self.buffer.add(experience) | ||||
|  | ||||
|                 action = self.q_net.act(torch.from_numpy(obs).unsqueeze(0).float()) \ | ||||
|                     if np.random.rand() > eps else env.action_space.sample() | ||||
|  | ||||
|                 next_obs, reward, done, info = env.step(action) | ||||
|  | ||||
|                 experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done)  # do we really need to copy? | ||||
|                 self.buffer.add(experience) | ||||
|                 # end of step routine | ||||
|                 self.anneal_eps(step) | ||||
|                 obs = next_obs | ||||
|                 step += 1 | ||||
|                 total_reward += reward | ||||
|                 eps = self.anneal_eps(step, n_steps) | ||||
|  | ||||
|                 if step % self.train_every_n_steps == 0: | ||||
|                     self.train() | ||||
|                 if step % self.target_update == 0: | ||||
|                     polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1.0) | ||||
|                     self.target_q_net.load_state_dict(self.q_net.state_dict()) | ||||
|  | ||||
|  | ||||
|             self.running_reward.append(total_reward) | ||||
|             if step % 800 == 0: | ||||
|                 print(f'Step: {step} ({(step/self.n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward)}\t eps: {self.eps:.4f}') | ||||
|             if step % 10 == 0: | ||||
|                 print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward)}\t' | ||||
|                       f' eps: {eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss)}') | ||||
|  | ||||
|  | ||||
|     def train(self): | ||||
|         for _ in range(4): | ||||
|         for _ in range(self.n_grad_steps): | ||||
|             experience = self.buffer.sample(self.batch_size) | ||||
|  | ||||
|             obs = torch.stack([torch.from_numpy(e.observation) for e in experience], 0).float() | ||||
|             next_obs = torch.stack([torch.from_numpy(e.next_observation) for e in experience], 0).float() | ||||
|             actions = torch.tensor([e.action for e in experience]).long() | ||||
|             rewards = torch.tensor([e.reward for e in experience]).float() | ||||
|             dones = torch.tensor([e.done for e in experience]).float() | ||||
|  | ||||
|             with torch.no_grad(): | ||||
|                 next_q_values = self.target_q_net(next_obs).max(-1)[0] | ||||
|                 target_q_values = rewards + (1 - dones) * self.gamma * next_q_values | ||||
|             print(rewards) | ||||
|  | ||||
|             q_values = self.q_net(obs).gather(-1, actions.unsqueeze(-1)) | ||||
|  | ||||
|             next_q_values = self.target_q_net(next_obs).detach().max(-1)[0] | ||||
|             target_q_values = rewards + (1. - dones) * self.gamma * next_q_values | ||||
|  | ||||
|  | ||||
|             q_values = self.q_net(obs).gather(-1, actions.unsqueeze(0)) | ||||
|  | ||||
|             delta = q_values - target_q_values | ||||
|             loss = torch.mean(self.reg_weight * q_values + torch.pow(delta, 2)) | ||||
|  | ||||
|             self.running_loss.append(loss.item()) | ||||
|  | ||||
|             # Optimize the model | ||||
|             self.optimizer.zero_grad() | ||||
|             loss.backward() | ||||
| @@ -154,13 +169,23 @@ class BaseQlearner: | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties | ||||
|     from algorithms.reg_dqn import RegDQN | ||||
|     dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30, | ||||
|                                 max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05) | ||||
|     move_props = MovementProperties(allow_diagonal_movement=True, | ||||
|                                     allow_square_movement=True, | ||||
|                                     allow_no_op=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=1, pomdp_radius=2, combin_agent_slices_in_obs=True, max_steps=400, omit_agent_slice_in_obs=False) | ||||
|     env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=1, pomdp_radius=2,  max_steps=400, omit_agent_slice_in_obs=False) | ||||
|     #print(env.action_space) | ||||
|     from stable_baselines3.dqn import DQN | ||||
|  | ||||
|     #dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 25000, batch_size = 64, target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025) | ||||
|     #print(dqn.policy) | ||||
|     #dqn.learn(100000) | ||||
|  | ||||
|  | ||||
|     print(env.observation_space, env.action_space) | ||||
|     dqn, target_dqn = BaseDQN(), BaseDQN() | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), n_steps=100000, target_update=2000, warmup=1000, train_every_n_steps=1, eps_end=0.025, reg_weight=0.0, exploration_fraction=0.3) | ||||
|     print(learner.learn()) | ||||
|     learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=5000, warmup=25000, lr=1e-4, gamma=0.99, | ||||
|                            train_every_n_steps=4, eps_end=0.05, reg_weight=0.1, exploration_fraction=0.25, batch_size=64) | ||||
|     learner.learn(100000) | ||||
|   | ||||
| @@ -23,6 +23,7 @@ class BaseFactory(gym.Env): | ||||
|     @property | ||||
|     def observation_space(self): | ||||
|         agent_slice = self.n_agents if self.omit_agent_slice_in_obs else 0 | ||||
|         agent_slice = 1 if self.combin_agent_slices_in_obs else agent_slice | ||||
|         if self.pomdp_radius: | ||||
|             return spaces.Box(low=0, high=1, shape=(self._state.shape[0] - agent_slice, self.pomdp_radius * 2 + 1, | ||||
|                                                     self.pomdp_radius * 2 + 1), dtype=np.float32) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 romue
					romue