mirror of
https://github.com/illiumst/marl-factory-grid.git
synced 2025-05-23 07:16:44 +02:00
Merge remote-tracking branch 'origin/main'
This commit is contained in:
commit
01e7b752b8
@ -1,226 +0,0 @@
|
|||||||
from typing import NamedTuple, Union
|
|
||||||
from collections import namedtuple, deque
|
|
||||||
import numpy as np
|
|
||||||
import random
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from stable_baselines3.common.utils import polyak_update
|
|
||||||
from stable_baselines3.common.buffers import ReplayBuffer
|
|
||||||
import copy
|
|
||||||
|
|
||||||
|
|
||||||
class Experience(NamedTuple):
|
|
||||||
observation: np.ndarray
|
|
||||||
next_observation: np.ndarray
|
|
||||||
action: np.ndarray
|
|
||||||
reward: Union[float, np.ndarray]
|
|
||||||
done : Union[bool, np.ndarray]
|
|
||||||
priority: np.ndarray = 1
|
|
||||||
|
|
||||||
|
|
||||||
class BaseBuffer:
|
|
||||||
def __init__(self, size: int):
|
|
||||||
self.size = size
|
|
||||||
self.experience = deque(maxlen=size)
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self.experience)
|
|
||||||
|
|
||||||
def add(self, experience):
|
|
||||||
self.experience.append(experience)
|
|
||||||
|
|
||||||
def sample(self, k):
|
|
||||||
sample = random.choices(self.experience, k=k)
|
|
||||||
observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float()
|
|
||||||
next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float()
|
|
||||||
actions = torch.tensor([e.action for e in sample]).long()
|
|
||||||
rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1)
|
|
||||||
dones = torch.tensor([e.done for e in sample]).float().view(-1, 1)
|
|
||||||
return Experience(observations, next_observations, actions, rewards, dones)
|
|
||||||
|
|
||||||
|
|
||||||
class PERBuffer(BaseBuffer):
|
|
||||||
def __init__(self, size, alpha=0.2):
|
|
||||||
super(PERBuffer, self).__init__(size)
|
|
||||||
self.alpha = alpha
|
|
||||||
|
|
||||||
def sample(self, k):
|
|
||||||
pr = [abs(e.priority)**self.alpha for e in self.experience]
|
|
||||||
pr = np.array(pr) / sum(pr)
|
|
||||||
idxs = random.choices(range(len(self)), weights=pr, k=k)
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class BaseDQN(nn.Module):
|
|
||||||
def __init__(self):
|
|
||||||
super(BaseDQN, self).__init__()
|
|
||||||
self.net = nn.Sequential(
|
|
||||||
nn.Flatten(),
|
|
||||||
nn.Linear(3*5*5, 64),
|
|
||||||
nn.ELU(),
|
|
||||||
nn.Linear(64, 64),
|
|
||||||
nn.ELU()
|
|
||||||
)
|
|
||||||
self.value_head = nn.Linear(64, 1)
|
|
||||||
self.advantage_head = nn.Linear(64, 9)
|
|
||||||
|
|
||||||
def act(self, x) -> np.ndarray:
|
|
||||||
with torch.no_grad():
|
|
||||||
action = self.forward(x).max(-1)[1].numpy()
|
|
||||||
return action
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
features = self.net(x)
|
|
||||||
advantages = self.advantage_head(features)
|
|
||||||
values = self.value_head(features)
|
|
||||||
return values + (advantages - advantages.mean())
|
|
||||||
|
|
||||||
def random_action(self):
|
|
||||||
return random.randrange(0, 5)
|
|
||||||
|
|
||||||
|
|
||||||
class BaseQlearner:
|
|
||||||
def __init__(self, q_net, target_q_net, env, buffer, target_update, eps_end, n_agents=1,
|
|
||||||
gamma=0.99, train_every_n_steps=4, n_grad_steps=1,
|
|
||||||
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
|
|
||||||
self.q_net = q_net
|
|
||||||
self.target_q_net = target_q_net
|
|
||||||
self.q_net.apply(self.weights_init)
|
|
||||||
self.target_q_net.eval()
|
|
||||||
self.env = env
|
|
||||||
self.buffer = buffer
|
|
||||||
self.target_update = target_update
|
|
||||||
self.eps = 1.
|
|
||||||
self.eps_end = eps_end
|
|
||||||
self.exploration_fraction = exploration_fraction
|
|
||||||
self.batch_size = batch_size
|
|
||||||
self.gamma = gamma
|
|
||||||
self.train_every_n_steps = train_every_n_steps
|
|
||||||
self.n_grad_steps = n_grad_steps
|
|
||||||
self.lr = lr
|
|
||||||
self.reg_weight = reg_weight
|
|
||||||
self.n_agents = n_agents
|
|
||||||
self.device = 'cpu'
|
|
||||||
self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr)
|
|
||||||
self.running_reward = deque(maxlen=5)
|
|
||||||
self.running_loss = deque(maxlen=5)
|
|
||||||
self._n_updates = 0
|
|
||||||
|
|
||||||
def to(self, device):
|
|
||||||
self.device = device
|
|
||||||
return self
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def weights_init(module, activation='relu'):
|
|
||||||
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
|
||||||
nn.init.xavier_normal_(module.weight, gain=torch.nn.init.calculate_gain(activation))
|
|
||||||
if module.bias is not None:
|
|
||||||
module.bias.data.fill_(0.0)
|
|
||||||
|
|
||||||
def anneal_eps(self, step, n_steps):
|
|
||||||
fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0)
|
|
||||||
self.eps = 1 + fraction * (self.eps_end - 1)
|
|
||||||
|
|
||||||
def get_action(self, obs) -> Union[int, np.ndarray]:
|
|
||||||
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
|
|
||||||
if np.random.rand() > self.eps:
|
|
||||||
action = self.q_net.act(o.float())
|
|
||||||
else:
|
|
||||||
action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)])
|
|
||||||
return action
|
|
||||||
|
|
||||||
def learn(self, n_steps):
|
|
||||||
step = 0
|
|
||||||
while step < n_steps:
|
|
||||||
obs, done = self.env.reset(), False
|
|
||||||
total_reward = 0
|
|
||||||
while not done:
|
|
||||||
|
|
||||||
action = self.get_action(obs)
|
|
||||||
|
|
||||||
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
|
|
||||||
|
|
||||||
experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done) # do we really need to copy?
|
|
||||||
self.buffer.add(experience)
|
|
||||||
# end of step routine
|
|
||||||
obs = next_obs
|
|
||||||
step += 1
|
|
||||||
total_reward += reward
|
|
||||||
self.anneal_eps(step, n_steps)
|
|
||||||
|
|
||||||
if step % self.train_every_n_steps == 0:
|
|
||||||
self.train()
|
|
||||||
self._n_updates += 1
|
|
||||||
if step % self.target_update == 0:
|
|
||||||
print('UPDATE')
|
|
||||||
polyak_update(self.q_net.parameters(), self.target_q_net.parameters(), 1)
|
|
||||||
|
|
||||||
|
|
||||||
self.running_reward.append(total_reward)
|
|
||||||
if step % 10 == 0:
|
|
||||||
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t'
|
|
||||||
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self._n_updates}')
|
|
||||||
|
|
||||||
def _training_routine(self, obs, next_obs, action):
|
|
||||||
current_q_values = self.q_net(obs)
|
|
||||||
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
|
|
||||||
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
|
||||||
return current_q_values, next_q_values_raw
|
|
||||||
|
|
||||||
def train(self):
|
|
||||||
if len(self.buffer) < self.batch_size: return
|
|
||||||
for _ in range(self.n_grad_steps):
|
|
||||||
|
|
||||||
experience = self.buffer.sample(self.batch_size)
|
|
||||||
#print(experience.observation.shape, experience.next_observation.shape, experience.action.shape, experience.reward.shape, experience.done.shape)
|
|
||||||
if self.n_agents <= 1:
|
|
||||||
pred_q, target_q_raw = self._training_routine(experience.observation, experience.next_observation, experience.action)
|
|
||||||
else:
|
|
||||||
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
|
|
||||||
for agent_i in range(self.n_agents):
|
|
||||||
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
|
|
||||||
experience.next_observation[:, agent_i],
|
|
||||||
experience.action[:, agent_i].unsqueeze(-1)
|
|
||||||
)
|
|
||||||
pred_q += q_values
|
|
||||||
target_q_raw += next_q_values_raw
|
|
||||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
|
||||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
|
||||||
|
|
||||||
# log loss
|
|
||||||
self.running_loss.append(loss.item())
|
|
||||||
# Optimize the model
|
|
||||||
self.optimizer.zero_grad()
|
|
||||||
loss.backward()
|
|
||||||
torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), 10)
|
|
||||||
self.optimizer.step()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
|
||||||
from algorithms.reg_dqn import RegDQN
|
|
||||||
from stable_baselines3.common.vec_env import DummyVecEnv
|
|
||||||
|
|
||||||
N_AGENTS = 1
|
|
||||||
|
|
||||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
|
||||||
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
|
||||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
|
||||||
allow_square_movement=True,
|
|
||||||
allow_no_op=False)
|
|
||||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
|
||||||
#env = DummyVecEnv([lambda: env])
|
|
||||||
from stable_baselines3.dqn import DQN
|
|
||||||
|
|
||||||
#dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 40000, learning_starts = 0, batch_size = 64,learning_rate=0.0008,
|
|
||||||
# target_update_interval = 3500, exploration_fraction = 0.25, exploration_final_eps = 0.05,
|
|
||||||
# train_freq=4, gradient_steps=1, reg_weight=0.05, seed=69)
|
|
||||||
#dqn.learn(100000)
|
|
||||||
|
|
||||||
|
|
||||||
dqn, target_dqn = BaseDQN(), BaseDQN()
|
|
||||||
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0008, gamma=0.99, n_agents=N_AGENTS,
|
|
||||||
train_every_n_steps=4, eps_end=0.05, n_grad_steps=1, reg_weight=0.05, exploration_fraction=0.25, batch_size=64)
|
|
||||||
learner.learn(100000)
|
|
182
algorithms/common.py
Normal file
182
algorithms/common.py
Normal file
@ -0,0 +1,182 @@
|
|||||||
|
from typing import NamedTuple, Union
|
||||||
|
from collections import deque, OrderedDict
|
||||||
|
import numpy as np
|
||||||
|
import random
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class Experience(NamedTuple):
|
||||||
|
# can be use for a single (s_t, a, r s_{t+1}) tuple
|
||||||
|
# or for a batch of tuples
|
||||||
|
observation: np.ndarray
|
||||||
|
next_observation: np.ndarray
|
||||||
|
action: np.ndarray
|
||||||
|
reward: Union[float, np.ndarray]
|
||||||
|
done : Union[bool, np.ndarray]
|
||||||
|
episode: int = -1
|
||||||
|
|
||||||
|
|
||||||
|
class BaseLearner:
|
||||||
|
def __init__(self, env, n_agents=1, train_every=('step', 4), n_grad_steps=1):
|
||||||
|
assert train_every[0] in ['step', 'episode'], 'train_every[0] must be one of ["step", "episode"]'
|
||||||
|
self.env = env
|
||||||
|
self.n_agents = n_agents
|
||||||
|
self.n_grad_steps = n_grad_steps
|
||||||
|
self.train_every = train_every
|
||||||
|
self.device = 'cpu'
|
||||||
|
self.n_updates = 0
|
||||||
|
self.step = 0
|
||||||
|
self.episode_step = 0
|
||||||
|
self.episode = 0
|
||||||
|
self.running_reward = deque(maxlen=5)
|
||||||
|
|
||||||
|
def to(self, device):
|
||||||
|
self.device = device
|
||||||
|
for attr, value in self.__dict__.items():
|
||||||
|
if isinstance(value, nn.Module):
|
||||||
|
value = value.to(self.device)
|
||||||
|
return self
|
||||||
|
|
||||||
|
def get_action(self, obs) -> Union[int, np.ndarray]:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def on_new_experience(self, experience):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def on_step_end(self, n_steps):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def on_episode_end(self, n_steps):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def train(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def learn(self, n_steps):
|
||||||
|
train_type, train_freq = self.train_every
|
||||||
|
while self.step < n_steps:
|
||||||
|
obs, done = self.env.reset(), False
|
||||||
|
total_reward = 0
|
||||||
|
self.episode_step = 0
|
||||||
|
while not done:
|
||||||
|
|
||||||
|
action = self.get_action(obs)
|
||||||
|
|
||||||
|
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
|
||||||
|
|
||||||
|
experience = Experience(observation=obs, next_observation=next_obs,
|
||||||
|
action=action, reward=reward,
|
||||||
|
done=done, episode=self.episode) # do we really need to copy?
|
||||||
|
self.on_new_experience(experience)
|
||||||
|
# end of step routine
|
||||||
|
obs = next_obs
|
||||||
|
total_reward += reward
|
||||||
|
self.step += 1
|
||||||
|
self.episode_step += 1
|
||||||
|
self.on_step_end(n_steps)
|
||||||
|
if train_type == 'step' and (self.step % train_freq == 0):
|
||||||
|
self.train()
|
||||||
|
self.n_updates += 1
|
||||||
|
self.on_episode_end(n_steps)
|
||||||
|
if train_type == 'episode' and (self.episode % train_freq == 0):
|
||||||
|
self.train()
|
||||||
|
self.n_updates += 1
|
||||||
|
|
||||||
|
self.running_reward.append(total_reward)
|
||||||
|
self.episode += 1
|
||||||
|
try:
|
||||||
|
if self.step % 10 == 0:
|
||||||
|
print(
|
||||||
|
f'Step: {self.step} ({(self.step / n_steps) * 100:.2f}%)\tRunning reward: {sum(list(self.running_reward)) / len(self.running_reward):.2f}\t'
|
||||||
|
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss)) / len(self.running_loss):.4f}\tUpdates:{self.n_updates}')
|
||||||
|
except Exception as e:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class BaseBuffer:
|
||||||
|
def __init__(self, size: int):
|
||||||
|
self.size = size
|
||||||
|
self.experience = deque(maxlen=size)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.experience)
|
||||||
|
|
||||||
|
def add(self, experience):
|
||||||
|
self.experience.append(experience)
|
||||||
|
|
||||||
|
def sample(self, k, cer=4):
|
||||||
|
sample = random.choices(self.experience, k=k-cer)
|
||||||
|
for i in range(cer): sample += [self.experience[-i]]
|
||||||
|
observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float()
|
||||||
|
next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float()
|
||||||
|
actions = torch.tensor([e.action for e in sample]).long()
|
||||||
|
rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1)
|
||||||
|
dones = torch.tensor([e.done for e in sample]).float().view(-1, 1)
|
||||||
|
return Experience(observations, next_observations, actions, rewards, dones)
|
||||||
|
|
||||||
|
|
||||||
|
def soft_update(local_model, target_model, tau):
|
||||||
|
# taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb
|
||||||
|
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
|
||||||
|
target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data)
|
||||||
|
|
||||||
|
|
||||||
|
def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'):
|
||||||
|
activations = {'elu': nn.ELU, 'relu': nn.ReLU, 'sigmoid': nn.Sigmoid,
|
||||||
|
'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh,
|
||||||
|
'gelu': nn.GELU, 'identity': nn.Identity}
|
||||||
|
layers = [('Flatten', nn.Flatten())] if flatten else []
|
||||||
|
for i in range(1, len(dims)):
|
||||||
|
layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i])))
|
||||||
|
activation_str = activation if i != len(dims)-1 else activation_last
|
||||||
|
layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]()))
|
||||||
|
return nn.Sequential(OrderedDict(layers))
|
||||||
|
|
||||||
|
|
||||||
|
class BaseDQN(nn.Module):
|
||||||
|
def __init__(self, dims=[3*5*5, 64, 64, 9]):
|
||||||
|
super(BaseDQN, self).__init__()
|
||||||
|
self.net = mlp_maker(dims, flatten=True)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def act(self, x) -> np.ndarray:
|
||||||
|
action = self.forward(x).max(-1)[1].numpy()
|
||||||
|
return action
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.net(x)
|
||||||
|
|
||||||
|
|
||||||
|
class BaseDDQN(BaseDQN):
|
||||||
|
def __init__(self,
|
||||||
|
backbone_dims=[3*5*5, 64, 64],
|
||||||
|
value_dims=[64, 1],
|
||||||
|
advantage_dims=[64, 9]):
|
||||||
|
super(BaseDDQN, self).__init__(backbone_dims)
|
||||||
|
self.net = mlp_maker(backbone_dims, flatten=True)
|
||||||
|
self.value_head = mlp_maker(value_dims)
|
||||||
|
self.advantage_head = mlp_maker(advantage_dims)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
features = self.net(x)
|
||||||
|
advantages = self.advantage_head(features)
|
||||||
|
values = self.value_head(features)
|
||||||
|
return values + (advantages - advantages.mean())
|
||||||
|
|
||||||
|
|
||||||
|
class QTRANtestNet(nn.Module):
|
||||||
|
def __init__(self, backbone_dims=[3*5*5, 64, 64], q_head=[64, 9]):
|
||||||
|
super(QTRANtestNet, self).__init__()
|
||||||
|
self.backbone = mlp_maker(backbone_dims, flatten=True, activation_last='elu')
|
||||||
|
self.q_head = mlp_maker(q_head)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
features = self.backbone(x)
|
||||||
|
qs = self.q_head(features)
|
||||||
|
return qs, features
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def act(self, x) -> np.ndarray:
|
||||||
|
action = self.forward(x)[0].max(-1)[1].numpy()
|
||||||
|
return action
|
53
algorithms/m_q_learner.py
Normal file
53
algorithms/m_q_learner.py
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from algorithms.q_learner import QLearner
|
||||||
|
|
||||||
|
|
||||||
|
class MQLearner(QLearner):
|
||||||
|
# Munchhausen Q-Learning
|
||||||
|
def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs):
|
||||||
|
super(MQLearner, self).__init__(*args, **kwargs)
|
||||||
|
assert self.n_agents == 1, 'M-DQN currently only supports single agent training'
|
||||||
|
self.temperature = temperature
|
||||||
|
self.alpha = alpha
|
||||||
|
self.clip0 = clip_l0
|
||||||
|
|
||||||
|
def tau_ln_pi(self, qs):
|
||||||
|
# computes log(softmax(qs/temperature))
|
||||||
|
# Custom log-sum-exp trick from page 18 to compute the log-policy terms
|
||||||
|
v_k = qs.max(-1)[0].unsqueeze(-1)
|
||||||
|
advantage = qs - v_k
|
||||||
|
logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1)
|
||||||
|
tau_ln_pi = advantage - self.temperature * logsum
|
||||||
|
return tau_ln_pi
|
||||||
|
|
||||||
|
def train(self):
|
||||||
|
if len(self.buffer) < self.batch_size: return
|
||||||
|
for _ in range(self.n_grad_steps):
|
||||||
|
|
||||||
|
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
q_target_next = self.target_q_net(experience.next_observation)
|
||||||
|
tau_log_pi_next = self.tau_ln_pi(q_target_next)
|
||||||
|
|
||||||
|
q_k_targets = self.target_q_net(experience.observation)
|
||||||
|
log_pi = self.tau_ln_pi(q_k_targets)
|
||||||
|
|
||||||
|
pi_target = F.softmax(q_target_next / self.temperature, dim=-1)
|
||||||
|
q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1)
|
||||||
|
|
||||||
|
munchausen_addon = log_pi.gather(-1, experience.action)
|
||||||
|
|
||||||
|
munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0))
|
||||||
|
|
||||||
|
# Compute Q targets for current states
|
||||||
|
m_q_target = munchausen_reward + q_target
|
||||||
|
|
||||||
|
# Get expected Q values from local model
|
||||||
|
q_k = self.q_net(experience.observation)
|
||||||
|
pred_q = q_k.gather(-1, experience.action)
|
||||||
|
|
||||||
|
# Compute loss
|
||||||
|
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2))
|
||||||
|
self._backprop_loss(loss)
|
122
algorithms/q_learner.py
Normal file
122
algorithms/q_learner.py
Normal file
@ -0,0 +1,122 @@
|
|||||||
|
from typing import Union
|
||||||
|
import gym
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from collections import deque
|
||||||
|
from pathlib import Path
|
||||||
|
import yaml
|
||||||
|
from algorithms.common import BaseLearner, BaseBuffer, soft_update, Experience
|
||||||
|
|
||||||
|
|
||||||
|
class QLearner(BaseLearner):
|
||||||
|
def __init__(self, q_net, target_q_net, env, buffer_size=1e5, target_update=3000, eps_end=0.05, n_agents=1,
|
||||||
|
gamma=0.99, train_every=('step', 4), n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2,
|
||||||
|
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0, eps_start=1):
|
||||||
|
super(QLearner, self).__init__(env, n_agents, train_every, n_grad_steps)
|
||||||
|
self.q_net = q_net
|
||||||
|
self.target_q_net = target_q_net
|
||||||
|
self.target_q_net.eval()
|
||||||
|
soft_update(self.q_net, self.target_q_net, tau=1.0)
|
||||||
|
self.buffer = BaseBuffer(buffer_size)
|
||||||
|
self.target_update = target_update
|
||||||
|
self.eps = eps_start
|
||||||
|
self.eps_start = eps_start
|
||||||
|
self.eps_end = eps_end
|
||||||
|
self.exploration_fraction = exploration_fraction
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.gamma = gamma
|
||||||
|
self.tau = tau
|
||||||
|
self.reg_weight = reg_weight
|
||||||
|
self.weight_decay = weight_decay
|
||||||
|
self.lr = lr
|
||||||
|
self.optimizer = torch.optim.AdamW(self.q_net.parameters(),
|
||||||
|
lr=self.lr,
|
||||||
|
weight_decay=self.weight_decay)
|
||||||
|
self.max_grad_norm = max_grad_norm
|
||||||
|
self.running_reward = deque(maxlen=5)
|
||||||
|
self.running_loss = deque(maxlen=5)
|
||||||
|
self.n_updates = 0
|
||||||
|
|
||||||
|
def save(self, path):
|
||||||
|
path = Path(path) # no-op if already instance of Path
|
||||||
|
path.mkdir(parents=True, exist_ok=True)
|
||||||
|
hparams = {k: v for k, v in self.__dict__.items() if not(isinstance(v, BaseBuffer) or
|
||||||
|
isinstance(v, torch.optim.Optimizer) or
|
||||||
|
isinstance(v, gym.Env) or
|
||||||
|
isinstance(v, nn.Module))
|
||||||
|
}
|
||||||
|
hparams.update({'class': self.__class__.__name__})
|
||||||
|
with (path / 'hparams.yaml').open('w') as outfile:
|
||||||
|
yaml.dump(hparams, outfile)
|
||||||
|
torch.save(self.q_net, path / 'q_net.pt')
|
||||||
|
|
||||||
|
def anneal_eps(self, step, n_steps):
|
||||||
|
fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0)
|
||||||
|
self.eps = 1 + fraction * (self.eps_end - 1)
|
||||||
|
|
||||||
|
def get_action(self, obs) -> Union[int, np.ndarray]:
|
||||||
|
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
|
||||||
|
if np.random.rand() > self.eps:
|
||||||
|
action = self.q_net.act(o.float())
|
||||||
|
else:
|
||||||
|
action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)])
|
||||||
|
return action
|
||||||
|
|
||||||
|
def on_new_experience(self, experience):
|
||||||
|
self.buffer.add(experience)
|
||||||
|
|
||||||
|
def on_step_end(self, n_steps):
|
||||||
|
self.anneal_eps(self.step, n_steps)
|
||||||
|
if self.step % self.target_update == 0:
|
||||||
|
print('UPDATE')
|
||||||
|
soft_update(self.q_net, self.target_q_net, tau=self.tau)
|
||||||
|
|
||||||
|
def _training_routine(self, obs, next_obs, action):
|
||||||
|
current_q_values = self.q_net(obs)
|
||||||
|
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
|
||||||
|
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
||||||
|
return current_q_values, next_q_values_raw
|
||||||
|
|
||||||
|
def _backprop_loss(self, loss):
|
||||||
|
# log loss
|
||||||
|
self.running_loss.append(loss.item())
|
||||||
|
# Optimize the model
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm)
|
||||||
|
self.optimizer.step()
|
||||||
|
|
||||||
|
def train(self):
|
||||||
|
if len(self.buffer) < self.batch_size: return
|
||||||
|
for _ in range(self.n_grad_steps):
|
||||||
|
experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1])
|
||||||
|
pred_q, target_q_raw = self._training_routine(experience.observation,
|
||||||
|
experience.next_observation,
|
||||||
|
experience.action)
|
||||||
|
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||||
|
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||||
|
self._backprop_loss(loss)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
||||||
|
from algorithms.common import BaseDDQN
|
||||||
|
from algorithms.vdn_learner import VDNLearner
|
||||||
|
from algorithms.udr_learner import UDRLearner
|
||||||
|
|
||||||
|
N_AGENTS = 1
|
||||||
|
|
||||||
|
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||||
|
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
||||||
|
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||||
|
allow_square_movement=True,
|
||||||
|
allow_no_op=False)
|
||||||
|
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||||
|
|
||||||
|
dqn, target_dqn = BaseDDQN(), BaseDDQN()
|
||||||
|
learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||||
|
train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||||
|
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
|
||||||
|
learner.learn(100000)
|
48
algorithms/qtran_learner.py
Normal file
48
algorithms/qtran_learner.py
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
import torch
|
||||||
|
from algorithms.q_learner import QLearner
|
||||||
|
|
||||||
|
|
||||||
|
class QTRANLearner(QLearner):
|
||||||
|
def __init__(self, *args, weight_opt=1., weigt_nopt=1., **kwargs):
|
||||||
|
super(QTRANLearner, self).__init__(*args, **kwargs)
|
||||||
|
assert self.n_agents >= 2, 'QTRANLearner requires more than one agent, use QLearner instead'
|
||||||
|
self.weight_opt = weight_opt
|
||||||
|
self.weigt_nopt = weigt_nopt
|
||||||
|
|
||||||
|
def _training_routine(self, obs, next_obs, action):
|
||||||
|
# todo remove - is inherited - only used while implementing qtran
|
||||||
|
current_q_values = self.q_net(obs)
|
||||||
|
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
|
||||||
|
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
||||||
|
return current_q_values, next_q_values_raw
|
||||||
|
|
||||||
|
def local_qs(self, observations, actions):
|
||||||
|
Q_jt = torch.zeros_like(actions) # placeholder to sum up individual q values
|
||||||
|
features = []
|
||||||
|
for agent_i in range(self.n_agents):
|
||||||
|
q_values_agent_i, features_agent_i = self.q_net(observations[:, agent_i]) # Individual action-value network
|
||||||
|
q_values_agent_i = torch.gather(q_values_agent_i, dim=-1, index=actions[:, agent_i].unsqueeze(-1))
|
||||||
|
Q_jt += q_values_agent_i
|
||||||
|
features.append(features_agent_i)
|
||||||
|
feature_sum = torch.stack(features, 0).sum(0) # (n_agents x hdim) -> hdim
|
||||||
|
return Q_jt
|
||||||
|
|
||||||
|
def train(self):
|
||||||
|
if len(self.buffer) < self.batch_size: return
|
||||||
|
for _ in range(self.n_grad_steps):
|
||||||
|
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||||
|
|
||||||
|
Q_jt_prime = self.local_qs(experience.observation, experience.action) # sum of individual q-vals
|
||||||
|
Q_jt = None
|
||||||
|
V_jt = None
|
||||||
|
|
||||||
|
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
|
||||||
|
for agent_i in range(self.n_agents):
|
||||||
|
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
|
||||||
|
experience.next_observation[:, agent_i],
|
||||||
|
experience.action[:, agent_i].unsqueeze(-1))
|
||||||
|
pred_q += q_values
|
||||||
|
target_q_raw += next_q_values_raw
|
||||||
|
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||||
|
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||||
|
self._backprop_loss(loss)
|
178
algorithms/udr_learner.py
Normal file
178
algorithms/udr_learner.py
Normal file
@ -0,0 +1,178 @@
|
|||||||
|
import random
|
||||||
|
from typing import Union, List
|
||||||
|
from collections import deque
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from algorithms.common import BaseBuffer, Experience, BaseLearner, BaseDQN, mlp_maker
|
||||||
|
from collections import defaultdict
|
||||||
|
|
||||||
|
|
||||||
|
class UDRLBuffer(BaseBuffer):
|
||||||
|
def __init__(self, size):
|
||||||
|
super(UDRLBuffer, self).__init__(0)
|
||||||
|
self.experience = defaultdict(list)
|
||||||
|
self.size = size
|
||||||
|
|
||||||
|
def add(self, experience):
|
||||||
|
self.experience[experience.episode].append(experience)
|
||||||
|
if len(self.experience) > self.size:
|
||||||
|
self.sort_and_prune()
|
||||||
|
|
||||||
|
def select_time_steps(self, episode: List[Experience]):
|
||||||
|
T = len(episode) # max horizon
|
||||||
|
t1 = random.randint(0, T - 1)
|
||||||
|
t2 = random.randint(t1 + 1, T)
|
||||||
|
return t1, t2, T
|
||||||
|
|
||||||
|
def sort_and_prune(self):
|
||||||
|
scores = []
|
||||||
|
for k, episode_experience in self.experience.items():
|
||||||
|
r = sum([e.reward for e in episode_experience])
|
||||||
|
scores.append((r, k))
|
||||||
|
sorted_scores = sorted(scores, reverse=True)
|
||||||
|
return sorted_scores
|
||||||
|
|
||||||
|
def sample(self, batch_size, cer=0):
|
||||||
|
random_episode_keys = random.choices(list(self.experience.keys()), k=batch_size)
|
||||||
|
lsts = (obs, desired_rewards, horizons, actions) = [], [], [], []
|
||||||
|
for ek in random_episode_keys:
|
||||||
|
episode = self.experience[ek]
|
||||||
|
t1, t2, T = self.select_time_steps(episode)
|
||||||
|
t2 = T # TODO only good for episodic envs
|
||||||
|
observation = episode[t1].observation
|
||||||
|
desired_reward = sum([experience.reward for experience in episode[t1:t2]])
|
||||||
|
horizon = t2 - t1
|
||||||
|
action = episode[t1].action
|
||||||
|
for lst, val in zip(lsts, [observation, desired_reward, horizon, action]):
|
||||||
|
lst.append(val)
|
||||||
|
return (torch.stack([torch.from_numpy(o) for o in obs], 0).float(),
|
||||||
|
torch.tensor(desired_rewards).view(-1, 1).float(),
|
||||||
|
torch.tensor(horizons).view(-1, 1).float(),
|
||||||
|
torch.tensor(actions))
|
||||||
|
|
||||||
|
|
||||||
|
class UDRLearner(BaseLearner):
|
||||||
|
# Upside Down Reinforcement Learner
|
||||||
|
def __init__(self, env, desired_reward, desired_horizon,
|
||||||
|
behavior_fn=None, buffer_size=100, n_warm_up_episodes=8, best_x=20,
|
||||||
|
batch_size=128, lr=1e-3, n_agents=1, train_every=('episode', 4), n_grad_steps=1):
|
||||||
|
super(UDRLearner, self).__init__(env, n_agents, train_every, n_grad_steps)
|
||||||
|
assert self.n_agents == 1, 'UDRL currently only supports single agent training'
|
||||||
|
self.behavior_fn = behavior_fn
|
||||||
|
self.buffer_size = buffer_size
|
||||||
|
self.n_warm_up_episodes = n_warm_up_episodes
|
||||||
|
self.buffer = UDRLBuffer(buffer_size)
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.mode = 'train'
|
||||||
|
self.best_x = best_x
|
||||||
|
self.desired_reward = desired_reward
|
||||||
|
self.desired_horizon = desired_horizon
|
||||||
|
self.lr = lr
|
||||||
|
self.optimizer = torch.optim.AdamW(self.behavior_fn.parameters(), lr=lr)
|
||||||
|
|
||||||
|
self.running_loss = deque(maxlen=self.n_grad_steps*5)
|
||||||
|
|
||||||
|
def sample_exploratory_commands(self):
|
||||||
|
top_x = self.buffer.sort_and_prune()[:self.best_x]
|
||||||
|
# The exploratory desired horizon dh0 is set to the mean of the lengths of the selected episodes
|
||||||
|
new_desired_horizon = np.mean([len(self.buffer.experience[k]) for _, k in top_x])
|
||||||
|
# save all top_X cumulative returns in a list
|
||||||
|
returns = [r for r, _ in top_x]
|
||||||
|
# from these returns calc the mean and std
|
||||||
|
mean_returns = np.mean([r for r, _ in top_x])
|
||||||
|
std_returns = np.std(returns)
|
||||||
|
# sample desired reward from a uniform distribution given the mean and the std
|
||||||
|
new_desired_reward = np.random.uniform(mean_returns, mean_returns + std_returns)
|
||||||
|
self.exploratory_commands = (new_desired_reward, new_desired_horizon)
|
||||||
|
return torch.tensor([[new_desired_reward]]).float(), torch.tensor([[new_desired_horizon]]).float()
|
||||||
|
|
||||||
|
def on_new_experience(self, experience):
|
||||||
|
self.buffer.add(experience)
|
||||||
|
self.desired_reward = self.desired_reward - torch.tensor(experience.reward).float().view(1, 1)
|
||||||
|
|
||||||
|
def on_step_end(self, n_steps):
|
||||||
|
one = torch.tensor([1.]).float().view(1, 1)
|
||||||
|
self.desired_horizon -= one
|
||||||
|
self.desired_horizon = self.desired_horizon if self.desired_horizon >= 1. else one
|
||||||
|
|
||||||
|
def on_episode_end(self, n_steps):
|
||||||
|
self.desired_reward, self.desired_horizon = self.sample_exploratory_commands()
|
||||||
|
|
||||||
|
def get_action(self, obs) -> Union[int, np.ndarray]:
|
||||||
|
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
|
||||||
|
bf_out = self.behavior_fn(o.float(), self.desired_reward, self.desired_horizon)
|
||||||
|
dist = torch.distributions.Categorical(bf_out)
|
||||||
|
sample = dist.sample()
|
||||||
|
return [sample.item()]#[self.env.action_space.sample()]
|
||||||
|
|
||||||
|
def _backprop_loss(self, loss):
|
||||||
|
# log loss
|
||||||
|
self.running_loss.append(loss.item())
|
||||||
|
# Optimize the model
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
#torch.nn.utils.clip_grad_norm_(self.behavior_fn.parameters(), 10)
|
||||||
|
self.optimizer.step()
|
||||||
|
|
||||||
|
def train(self):
|
||||||
|
if len(self.buffer) < self.n_warm_up_episodes: return
|
||||||
|
for _ in range(self.n_grad_steps):
|
||||||
|
experience = self.buffer.sample(self.batch_size)
|
||||||
|
bf_out = self.behavior_fn(*experience[:3])
|
||||||
|
labels = experience[-1]
|
||||||
|
#print(labels.shape)
|
||||||
|
loss = nn.CrossEntropyLoss()(bf_out, labels.squeeze())
|
||||||
|
mean_entropy = torch.distributions.Categorical(bf_out).entropy().mean()
|
||||||
|
self._backprop_loss(loss - 0.03*mean_entropy)
|
||||||
|
print(f'Running loss: {np.mean(list(self.running_loss)):.3f}\tRunning reward: {np.mean(self.running_reward):.2f}'
|
||||||
|
f'\td_r: {self.desired_reward.item():.2f}\ttd_h: {self.desired_horizon.item()}')
|
||||||
|
|
||||||
|
|
||||||
|
class BF(BaseDQN):
|
||||||
|
def __init__(self, dims=[5*5*3, 64]):
|
||||||
|
super(BF, self).__init__(dims)
|
||||||
|
self.net = mlp_maker(dims, activation_last='identity')
|
||||||
|
self.command_net = mlp_maker([2, 64], activation_last='sigmoid')
|
||||||
|
self.common_branch = mlp_maker([64, 64, 64, 9])
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, observation, desired_reward, horizon):
|
||||||
|
command = torch.cat((desired_reward*(0.02), horizon*(0.01)), dim=-1)
|
||||||
|
obs_out = self.net(torch.flatten(observation, start_dim=1))
|
||||||
|
command_out = self.command_net(command)
|
||||||
|
combined = obs_out*command_out
|
||||||
|
out = self.common_branch(combined)
|
||||||
|
return torch.softmax(out, -1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
||||||
|
from algorithms.common import BaseDDQN
|
||||||
|
from algorithms.vdn_learner import VDNLearner
|
||||||
|
|
||||||
|
N_AGENTS = 1
|
||||||
|
|
||||||
|
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||||
|
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
||||||
|
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||||
|
allow_square_movement=True,
|
||||||
|
allow_no_op=False)
|
||||||
|
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,
|
||||||
|
max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||||
|
|
||||||
|
bf = BF()
|
||||||
|
desired_reward = torch.tensor([200.]).view(1, 1).float()
|
||||||
|
desired_horizon = torch.tensor([400.]).view(1, 1).float()
|
||||||
|
learner = UDRLearner(env, behavior_fn=bf,
|
||||||
|
train_every=('episode', 2),
|
||||||
|
buffer_size=40,
|
||||||
|
best_x=10,
|
||||||
|
lr=1e-3,
|
||||||
|
batch_size=64,
|
||||||
|
n_warm_up_episodes=12,
|
||||||
|
n_grad_steps=4,
|
||||||
|
desired_reward=desired_reward,
|
||||||
|
desired_horizon=desired_horizon)
|
||||||
|
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
|
||||||
|
learner.learn(500000)
|
40
algorithms/vdn_learner.py
Normal file
40
algorithms/vdn_learner.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
from typing import Union
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from algorithms.q_learner import QLearner
|
||||||
|
|
||||||
|
|
||||||
|
class VDNLearner(QLearner):
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super(VDNLearner, self).__init__(*args, **kwargs)
|
||||||
|
assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead'
|
||||||
|
|
||||||
|
def get_action(self, obs) -> Union[int, np.ndarray]:
|
||||||
|
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
|
||||||
|
eps = np.random.rand(self.n_agents)
|
||||||
|
greedy = eps > self.eps
|
||||||
|
agent_actions = None
|
||||||
|
actions = []
|
||||||
|
for i in range(self.n_agents):
|
||||||
|
if greedy[i]:
|
||||||
|
if agent_actions is None: agent_actions = self.q_net.act(o.float())
|
||||||
|
action = agent_actions[i]
|
||||||
|
else:
|
||||||
|
action = self.env.action_space.sample()
|
||||||
|
actions.append(action)
|
||||||
|
return np.array(actions)
|
||||||
|
|
||||||
|
def train(self):
|
||||||
|
if len(self.buffer) < self.batch_size: return
|
||||||
|
for _ in range(self.n_grad_steps):
|
||||||
|
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||||
|
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
|
||||||
|
for agent_i in range(self.n_agents):
|
||||||
|
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
|
||||||
|
experience.next_observation[:, agent_i],
|
||||||
|
experience.action[:, agent_i].unsqueeze(-1))
|
||||||
|
pred_q += q_values
|
||||||
|
target_q_raw += next_q_values_raw
|
||||||
|
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||||
|
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||||
|
self._backprop_loss(loss)
|
Loading…
x
Reference in New Issue
Block a user