Files
hom_traj_gen/lib/evaluation/classification.py
2020-03-05 16:58:23 +01:00

33 lines
983 B
Python

import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
class ROCEvaluation(object):
linewidth = 2
def __init__(self, prepare_figure=False):
self.prepare_figure = prepare_figure
self.epoch = 0
def __call__(self, prediction, label, plotting=False):
# Compute ROC curve and ROC area
fpr, tpr, _ = roc_curve(prediction, label)
roc_auc = auc(fpr, tpr)
if plotting:
fig = plt.gcf()
fig.plot(fpr, tpr, color='darkorange', lw=self.linewidth, label=f'ROC curve (area = {roc_auc})')
return roc_auc, fpr, tpr
def _prepare_fig(self):
fig = plt.gcf()
fig.plot([0, 1], [0, 1], color='navy', lw=self.linewidth, linestyle='--')
fig.xlim([0.0, 1.0])
fig.ylim([0.0, 1.05])
fig.xlabel('False Positive Rate')
fig.ylabel('True Positive Rate')
fig.legend(loc="lower right")
return fig