import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc class ROCEvaluation(object): linewidth = 2 def __init__(self, prepare_figure=False): self.prepare_figure = prepare_figure self.epoch = 0 def __call__(self, prediction, label, plotting=False): # Compute ROC curve and ROC area fpr, tpr, _ = roc_curve(prediction, label) roc_auc = auc(fpr, tpr) if plotting: fig = plt.gcf() fig.plot(fpr, tpr, color='darkorange', lw=self.linewidth, label=f'ROC curve (area = {roc_auc})') return roc_auc, fpr, tpr def _prepare_fig(self): fig = plt.gcf() fig.plot([0, 1], [0, 1], color='navy', lw=self.linewidth, linestyle='--') fig.xlim([0.0, 1.0]) fig.ylim([0.0, 1.05]) fig.xlabel('False Positive Rate') fig.ylabel('True Positive Rate') fig.legend(loc="lower right") return fig