Merge remote-tracking branch 'origin/master'

# Conflicts:
#	res/shapes/shapes_1.bmp
#	res/shapes/shapes_2.bmp
#	res/shapes/shapes_3.bmp
#	res/shapes/shapes_4.bmp
#	res/shapes/shapes_5.bmp
#	res/shapes/shapes_6.bmp
This commit is contained in:
Steffen Illium
2020-03-09 19:20:02 +01:00
24 changed files with 156 additions and 174 deletions

41
.gitignore vendored
View File

@@ -2,43 +2,11 @@
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User-specific stuff
.idea/
# Generated files
.idea/**/contentModel.xml
# Sensitive or high-churn files
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
.idea/**/dbnavigator.xml
# Gradle
.idea/**/gradle.xml
.idea/**/libraries
# Gradle and Maven with auto-import
# When using Gradle or Maven with auto-import, you should exclude module files,
# since they will be recreated, and may cause churn. Uncomment if using
# auto-import.
# .idea/artifacts
# .idea/compiler.xml
# .idea/jarRepositories.xml
# .idea/modules.xml
# .idea/*.iml
# .idea/modules
# *.iml
# *.ipr
.idea/**
# CMake
cmake-build-*/
# Mongo Explorer plugin
.idea/**/mongoSettings.xml
# File-based project format
*.iws
@@ -59,10 +27,3 @@ com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties
# Editor-based Rest Client
.idea/httpRequests
# Android studio 3.1+ serialized cache file
.idea/caches/build_file_checksums.ser
/.idea/inspectionProfiles/

2
.idea/.gitignore generated vendored
View File

@@ -1,2 +0,0 @@
# Default ignored files
/workspace.xml

22
.idea/deployment.xml generated
View File

@@ -1,22 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="PublishConfigData" autoUpload="On explicit save action" serverName="steffen@aimachine:22" showAutoUploadSettingsWarning="false">
<serverData>
<paths name="erlowa@aimachine">
<serverdata>
<mappings>
<mapping deploy="/" local="$PROJECT_DIR$" web="/" />
</mappings>
</serverdata>
</paths>
<paths name="steffen@aimachine:22">
<serverdata>
<mappings>
<mapping deploy="/" local="$PROJECT_DIR$" web="/" />
</mappings>
</serverdata>
</paths>
</serverData>
<option name="myAutoUpload" value="ON_EXPLICIT_SAVE" />
</component>
</project>

View File

@@ -1,23 +0,0 @@
<component name="ProjectDictionaryState">
<dictionary name="steffen">
<words>
<w>autopad</w>
<w>conv</w>
<w>convolutional</w>
<w>dataloader</w>
<w>dataloaders</w>
<w>datasets</w>
<w>homotopic</w>
<w>hparams</w>
<w>hyperparamter</w>
<w>kingma</w>
<w>logvar</w>
<w>mapname</w>
<w>mapnames</w>
<w>numlayers</w>
<w>reparameterize</w>
<w>softmax</w>
<w>traj</w>
</words>
</dictionary>
</component>

View File

@@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="Remote Python 3.7.6 (sftp://steffen@aimachine:22/home/steffen/envs/traj_gen/bin/python)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

View File

@@ -1,7 +0,0 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="PROJECT_PROFILE" value="Default" />
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

10
.idea/misc.xml generated
View File

@@ -1,10 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="JavaScriptSettings">
<option name="languageLevel" value="ES6" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="traj_gen@ai-machine" project-jdk-type="Python SDK" />
<component name="PyPackaging">
<option name="earlyReleasesAsUpgrades" value="true" />
</component>
</project>

8
.idea/modules.xml generated
View File

@@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/hom_traj_gen.iml" filepath="$PROJECT_DIR$/.idea/hom_traj_gen.iml" />
</modules>
</component>
</project>

6
.idea/vcs.xml generated
View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

15
.idea/webResources.xml generated
View File

@@ -1,15 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="WebResourcesPaths">
<contentEntries>
<entry url="file://$PROJECT_DIR$">
<entryData>
<resourceRoots>
<path value="file://$PROJECT_DIR$/res" />
<path value="file://$PROJECT_DIR$/data" />
</resourceRoots>
</entryData>
</entry>
</contentEntries>
</component>
</project>

View File

@@ -102,7 +102,7 @@ class TrajData(object):
def _load_datasets(self):
map_files = list(self.maps_root.glob('*.bmp'))
equal_split = int(self.length // len(map_files))
equal_split = int(self.length // len(map_files)) or 1
# find max image size among available maps:
max_map_size = (1, ) + tuple(reversed(tuple(map(max, *[Image.open(map_file).size for map_file in map_files]))))

View File

@@ -1,3 +1,7 @@
from statistics import mean
from random import choice
import torch
from functools import reduce
from operator import mul
@@ -6,9 +10,12 @@ from torch import nn
from torch.optim import Adam
from datasets.trajectory_dataset import TrajData
from lib.evaluation.classification import ROCEvaluation
from lib.modules.blocks import ConvModule, ResidualModule, DeConvModule
from lib.modules.utils import LightningBaseModule, Flatten
import matplotlib.pyplot as plt
class CNNRouteGeneratorModel(LightningBaseModule):
@@ -33,14 +40,53 @@ class CNNRouteGeneratorModel(LightningBaseModule):
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
kld_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
# Dimensional Resizing
kld_loss /= self.in_shape
loss = (kld_loss + discriminated_bce_loss) / 2
return dict(loss=loss, log=dict(loss=loss,
discriminated_bce_loss=discriminated_bce_loss,
kld_loss=kld_loss)
)
def test_step(self, *args, **kwargs):
pass
def _test_val_step(self, batch_xy, batch_nb, *args):
batch_x, label = batch_xy
generated_alternative, z, mu, logvar = self(batch_x + [label, ])
map_array, trajectory = batch_x
map_stack = torch.cat((map_array, trajectory, generated_alternative), dim=1)
pred_label = self.discriminator(map_stack)
discriminated_bce_loss = self.criterion(pred_label, label.float().unsqueeze(-1))
return dict(discriminated_bce_loss=discriminated_bce_loss, batch_nb=batch_nb,
pred_label=pred_label, label=label, generated_alternative=generated_alternative)
def validation_step(self, *args):
return self._test_val_step(*args)
def validation_epoch_end(self, outputs):
evaluation = ROCEvaluation(plot_roc=True)
pred_label = torch.cat([x['pred_label'] for x in outputs])
labels = torch.cat([x['label'] for x in outputs]).unsqueeze(1)
mean_losses = torch.stack([x['discriminated_bce_loss'] for x in outputs]).mean()
# Sci-py call ROC eval call is eval(true_label, prediction)
roc_auc, tpr, fpr = evaluation(labels.cpu().numpy(), pred_label.cpu().numpy(), )
# self.logger.log_metrics(score_dict)
self.logger.log_image(f'{self.name}_ROC-Curve_E{self.current_epoch}', plt.gcf())
plt.clf()
maps, trajectories, labels, val_restul_dict = self.generate_random()
from lib.visualization.generator_eval import GeneratorVisualizer
g = GeneratorVisualizer(maps, trajectories, labels, val_restul_dict)
fig = g.draw()
self.logger.log_image(f'{self.name}_Output_E{self.current_epoch}', fig)
return dict(mean_losses=mean_losses, roc_auc=roc_auc, epoch=self.current_epoch)
def test_step(self, *args):
return self._test_val_step(*args)
@property
def discriminator(self):
@@ -57,12 +103,14 @@ class CNNRouteGeneratorModel(LightningBaseModule):
super(CNNRouteGeneratorModel, self).__init__(*params)
# Dataset
self.dataset = TrajData(self.hparams.data_param.map_root, mode='just_route')
self.dataset = TrajData(self.hparams.data_param.map_root, mode='just_route',
length=self.hparams.data_param.dataset_length)
# Additional Attributes
self.in_shape = self.dataset.map_shapes_max
# Todo: Better naming and size in Parameters
self.feature_dim = 10
self.lat_dim = self.feature_dim + self.feature_dim + 1
self._disc = None
# NN Nodes
@@ -70,6 +118,7 @@ class CNNRouteGeneratorModel(LightningBaseModule):
#
# Utils
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.criterion = nn.MSELoss()
#
@@ -111,10 +160,14 @@ class CNNRouteGeneratorModel(LightningBaseModule):
self.traj_lin = nn.Linear(reduce(mul, self.traj_conv_3.shape), self.feature_dim)
#
# Mixed Encoder
self.mixed_lin = nn.Linear(self.lat_dim, self.lat_dim)
#
# Variational Bottleneck
self.mu = nn.Linear(self.feature_dim + self.feature_dim + 1, self.hparams.model_param.lat_dim)
self.logvar = nn.Linear(self.feature_dim + self.feature_dim + 1, self.hparams.model_param.lat_dim)
self.mu = nn.Linear(self.lat_dim, self.hparams.model_param.lat_dim)
self.logvar = nn.Linear(self.lat_dim, self.hparams.model_param.lat_dim)
#
# Alternative Generator
@@ -139,6 +192,32 @@ class CNNRouteGeneratorModel(LightningBaseModule):
#
# Encode
z, mu, logvar = self.encode(map_array, trajectory, label)
#
# Generate
alt_tensor = self.generate(z)
return alt_tensor, z, mu, logvar
@staticmethod
def reparameterize(mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def generate(self, z):
alt_tensor = self.alt_lin_1(z)
alt_tensor = self.alt_lin_2(alt_tensor)
alt_tensor = self.reshape_to_map(alt_tensor)
alt_tensor = self.alt_deconv_1(alt_tensor)
alt_tensor = self.alt_deconv_2(alt_tensor)
alt_tensor = self.alt_deconv_3(alt_tensor)
alt_tensor = self.alt_deconv_out(alt_tensor)
alt_tensor = self.sigmoid(alt_tensor)
return alt_tensor
def encode(self, map_array, trajectory, label):
map_tensor = self.map_conv_0(map_array)
map_tensor = self.map_res_1(map_tensor)
map_tensor = self.map_conv_1(map_tensor)
@@ -157,27 +236,19 @@ class CNNRouteGeneratorModel(LightningBaseModule):
mixed_tensor = torch.cat((map_tensor, traj_tensor, label.float().unsqueeze(-1)), dim=1)
mixed_tensor = self.relu(mixed_tensor)
mixed_tensor = self.mixed_lin(mixed_tensor)
mixed_tensor = self.relu(mixed_tensor)
#
# Parameter and Sampling
mu = self.mu(mixed_tensor)
logvar = self.logvar(mixed_tensor)
z = self.reparameterize(mu, logvar)
return z, mu, logvar
#
# Generate
alt_tensor = self.alt_lin_1(z)
alt_tensor = self.alt_lin_2(alt_tensor)
alt_tensor = self.reshape_to_map(alt_tensor)
alt_tensor = self.alt_deconv_1(alt_tensor)
alt_tensor = self.alt_deconv_2(alt_tensor)
alt_tensor = self.alt_deconv_3(alt_tensor)
alt_tensor = self.alt_deconv_out(alt_tensor)
return alt_tensor, z, mu, logvar
@staticmethod
def reparameterize(mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def generate_random(self, n=6):
maps = [self.map_storage[choice(self.map_storage.keys)] for _ in range(n)]
trajectories = torch.stack([x.get_random_trajectory() for x in maps] * 2)
maps = torch.stack([x.as_2d_array for x in maps] * 2)
labels = torch.as_tensor([0] * n + [1] * n)
return maps, trajectories, labels, self._test_val_step(maps, trajectories, labels)

View File

@@ -57,7 +57,8 @@ class ConvHomDetector(LightningBaseModule):
# Model Parameters
self.in_shape = self.dataset.map_shapes_max
assert len(self.in_shape) == 3, f'Image or map shape has to have 3 dims, but had: {len(self.in_shape)}'
self.criterion = nn.BCEWithLogitsLoss()
self.criterion = nn.BCELoss()
self.sigmoid = nn.Sigmoid()
# NN Nodes
# ============================
@@ -100,4 +101,5 @@ class ConvHomDetector(LightningBaseModule):
tensor = self.flatten(tensor)
tensor = self.linear(tensor)
tensor = self.classifier(tensor)
tensor = self.sigmoid(tensor)
return tensor

View File

@@ -90,7 +90,7 @@ class LightningBaseModule(pl.LightningModule, ABC):
# Data loading
# =============================================================================
# Map Object
self.map_storage = MapStorage(self.hparams.data_param.map_root)
self.map_storage = MapStorage(self.hparams.data_param.map_root, load_all=True)
def size(self):
return self.shape
@@ -143,19 +143,19 @@ class LightningBaseModule(pl.LightningModule, ABC):
# Train Dataloader
def train_dataloader(self):
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True,
batch_size=self.hparams.data_param.batchsize,
batch_size=self.hparams.train_param.batch_size,
num_workers=self.hparams.data_param.worker)
# Test Dataloader
def test_dataloader(self):
return DataLoader(dataset=self.dataset.test_dataset, shuffle=True,
batch_size=self.hparams.data_param.batchsize,
batch_size=self.hparams.train_param.batch_size,
num_workers=self.hparams.data_param.worker)
# Validation Dataloader
def val_dataloader(self):
return DataLoader(dataset=self.dataset.val_dataset, shuffle=False,
batch_size=self.hparams.data_param.batchsize,
batch_size=self.hparams.train_param.batch_size,
num_workers=self.hparams.data_param.worker)

View File

@@ -146,6 +146,7 @@ class Map(object):
img = Image.new('L', (self.height, self.width), 0)
draw = ImageDraw.Draw(img)
draw.polygon(polyline, outline=self.white, fill=self.white)
a = (np.where(np.asarray(img) == self.white, 1, 0) * np.where(self.as_2d_array == self.black, 1, 0)).sum()
@@ -166,6 +167,10 @@ class Map(object):
class MapStorage(object):
@property
def keys(self):
return list(self.data.keys())
def __init__(self, map_root, load_all=False):
self.data = dict()
self.map_root = Path(map_root)
@@ -174,11 +179,11 @@ class MapStorage(object):
_ = self[map_file.name]
def __getitem__(self, item):
if item in hasattr(self, item):
return self.__getattribute__(item)
if item in self.data.keys():
return self.data.get(item)
else:
with shelve.open(self.map_root / f'{item}.pik', flag='r') as d:
self.__setattr__(item, d['map']['map'])
current_map = Map().from_image(self.map_root / item)
self.data.__setitem__(item, np.asarray(current_map))
return self[item]

View File

@@ -0,0 +1,43 @@
import torch
import matplotlib.pyplot as plt
from mpl_toolkits.axisartist.axes_grid import ImageGrid
from tqdm import tqdm
from typing import List
class GeneratorVisualizer(object):
def __init__(self, maps, trajectories, labels, val_result_dict):
# val_results = dict(discriminated_bce_loss, batch_nb, pred_label, label, generated_alternative)
self.generated_alternatives = val_result_dict['generated_alternative']
self.pred_labels = val_result_dict['pred_label']
self.labels = labels
self.trajectories = trajectories
self.maps = maps
self.column_dict_list = self._build_column_dict_list()
def _build_column_dict_list(self):
dict_list = []
for idx in range(self.maps):
image = self.maps[idx] + self.trajectories[idx] + self.generated_alternatives
label = self.labels[idx]
dict_list.append(dict(image=image, label=label))
half_size = int(len(dict_list) // 2)
return dict_list[:half_size], dict_list[half_size:]
def draw(self):
fig = plt.figure()
grid = ImageGrid(fig, 111, # similar to subplot(111)
nrows_ncols=(len(self.column_dict_list[0]), len(self.column_dict_list)),
axes_pad=0.2, # pad between axes in inch.
)
for idx in grid.axes_all:
row, col = divmod(idx, len(self.column_dict_list))
current_image = self.column_dict_list[col]['image'][row]
current_label = self.column_dict_list[col]['label'][row]
grid[idx].imshow(current_image)
grid[idx].title.set_text(current_label)
fig.cbar_mode = 'single'
return fig

View File

@@ -33,7 +33,7 @@ main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
# Data Parameters
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
main_arg_parser.add_argument("--data_batchsize", type=int, default=100, help="")
main_arg_parser.add_argument("--data_dataset_length", type=int, default=10000, help="")
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
main_arg_parser.add_argument("--data_map_root", type=str, default='res/shapes', help="")
@@ -106,6 +106,7 @@ def run_lightning_loop(config_obj):
show_progress_bar=True,
weights_save_path=logger.log_dir,
gpus=[0] if torch.cuda.is_available() else None,
check_val_every_n_epoch=1,
# row_log_interval=(model.n_train_batches * 0.1), # TODO: Better Value / Setting
# log_save_interval=(model.n_train_batches * 0.2), # TODO: Better Value / Setting
checkpoint_callback=checkpoint_callback,

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

BIN
res/shapes/shapes_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 831 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB