Files
entrix_case_challange/forecasting_model/trainer.py
2025-05-02 10:45:06 +02:00

50 lines
1.4 KiB
Python

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from typing import Optional, Dict, Any
from ..utils.config_model import TrainingConfig
class Trainer:
def __init__(
self,
model: nn.Module,
train_loader: DataLoader,
val_loader: DataLoader,
loss_fn: nn.Module,
device: torch.device,
config: TrainingConfig,
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
target_scaler: Optional[Any] = None
):
self.model = model
self.train_loader = train_loader
self.val_loader = val_loader
self.loss_fn = loss_fn
self.device = device
self.config = config
self.scheduler = scheduler
self.target_scaler = target_scaler
# TODO: Initialize optimizer (Adam)
# TODO: Initialize early stopping if configured
def train_epoch(self) -> Dict[str, float]:
"""
Train for one epoch.
"""
# TODO: Implement training loop for one epoch
pass
def evaluate(self, loader: DataLoader) -> Dict[str, float]:
"""
Evaluate model on given data loader.
"""
# TODO: Implement evaluation with metrics on original scale
pass
def train(self) -> Dict[str, Any]:
"""
Main training loop with validation and early stopping.
"""
# TODO: Implement full training loop with validation
pass