import torch import torch.nn as nn from torch.utils.data import DataLoader from typing import Optional, Dict, Any from ..utils.config_model import TrainingConfig class Trainer: def __init__( self, model: nn.Module, train_loader: DataLoader, val_loader: DataLoader, loss_fn: nn.Module, device: torch.device, config: TrainingConfig, scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, target_scaler: Optional[Any] = None ): self.model = model self.train_loader = train_loader self.val_loader = val_loader self.loss_fn = loss_fn self.device = device self.config = config self.scheduler = scheduler self.target_scaler = target_scaler # TODO: Initialize optimizer (Adam) # TODO: Initialize early stopping if configured def train_epoch(self) -> Dict[str, float]: """ Train for one epoch. """ # TODO: Implement training loop for one epoch pass def evaluate(self, loader: DataLoader) -> Dict[str, float]: """ Evaluate model on given data loader. """ # TODO: Implement evaluation with metrics on original scale pass def train(self) -> Dict[str, Any]: """ Main training loop with validation and early stopping. """ # TODO: Implement full training loop with validation pass