intermediate backup
This commit is contained in:
@ -5,4 +5,39 @@ This module provides a configurable PyTorch-based LSTM model for time series for
|
||||
with support for feature engineering, cross-validation, and evaluation.
|
||||
"""
|
||||
|
||||
__version__ = "0.1.0"
|
||||
__version__ = "0.1.0"
|
||||
|
||||
# Expose core components for easier import
|
||||
from .data_processing import (
|
||||
load_raw_data,
|
||||
engineer_features,
|
||||
TimeSeriesCrossValidationSplitter,
|
||||
prepare_fold_data_and_loaders,
|
||||
TimeSeriesDataset
|
||||
)
|
||||
from .model import LSTMForecastLightningModule
|
||||
from .evaluation import (
|
||||
evaluate_fold_predictions,
|
||||
# Optionally expose the standalone evaluation utility if needed externally
|
||||
# evaluate_model_on_fold_test_set
|
||||
)
|
||||
|
||||
# Expose main configuration class from utils
|
||||
from .utils import MainConfig
|
||||
|
||||
# Expose the main execution script function if it's intended to be callable as a function
|
||||
# from .forecasting_model import run # Assuming the main script is named forecasting_model.py
|
||||
|
||||
# Define __all__ for explicit public API (optional but good practice)
|
||||
__all__ = [
|
||||
"load_raw_data",
|
||||
"engineer_features",
|
||||
"TimeSeriesCrossValidationSplitter",
|
||||
"prepare_fold_data_and_loaders",
|
||||
"TimeSeriesDataset",
|
||||
"LSTMForecastLightningModule",
|
||||
"evaluate_fold_predictions",
|
||||
# "evaluate_model_on_fold_test_set", # Uncomment if exposed
|
||||
"MainConfig",
|
||||
# "run", # Uncomment if exposed
|
||||
]
|
Reference in New Issue
Block a user