Files
entrix_case_challange/forecasting_model/__init__.py
2025-05-02 14:36:19 +02:00

43 lines
1.3 KiB
Python

"""
Time Series Forecasting Module with LSTM
This module provides a configurable PyTorch-based LSTM model for time series forecasting,
with support for feature engineering, cross-validation, and evaluation.
"""
__version__ = "0.1.0"
# Expose core components for easier import
from .data_processing import (
load_raw_data,
engineer_features,
TimeSeriesCrossValidationSplitter,
prepare_fold_data_and_loaders,
TimeSeriesDataset
)
from .model import LSTMForecastLightningModule
from .evaluation import (
evaluate_fold_predictions,
# Optionally expose the standalone evaluation utility if needed externally
# evaluate_model_on_fold_test_set
)
# Expose main configuration class from utils
from .utils import MainConfig
# Expose the main execution script function if it's intended to be callable as a function
# from .forecasting_model import run # Assuming the main script is named forecasting_model.py
# Define __all__ for explicit public API (optional but good practice)
__all__ = [
"load_raw_data",
"engineer_features",
"TimeSeriesCrossValidationSplitter",
"prepare_fold_data_and_loaders",
"TimeSeriesDataset",
"LSTMForecastLightningModule",
"evaluate_fold_predictions",
# "evaluate_model_on_fold_test_set", # Uncomment if exposed
"MainConfig",
# "run", # Uncomment if exposed
]