Done: First VIsualization

ToDo: Visualization for all classes, latent space setups
This commit is contained in:
Si11ium
2019-08-21 07:56:31 +02:00
parent 8aa3b3616f
commit 744c0c50b7
8 changed files with 320 additions and 23 deletions

View File

@ -25,6 +25,10 @@ class AdversarialAutoEncoder(AutoEncoder):
class AdversarialAELightningOverrides:
@property
def name(self):
return self.__class__.__name__
def forward(self, x):
return self.network.forward(x)
@ -46,6 +50,7 @@ class AdversarialAELightningOverrides:
d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape))
# Calculate the mean over both the real and the fake acc
# ToDo: do i need to compute this seperate?
d_loss = 0.5 * torch.add(d_loss_real, d_loss_fake)
return {'loss': d_loss}

View File

@ -5,16 +5,12 @@ from torch import Tensor
#######################
# Basic AE-Implementation
class AutoEncoder(Module, ABC):
class AutoEncoder(AbstractNeuralNetwork, ABC):
@property
def name(self):
return self.__class__.__name__
def __init__(self, dataParams, **kwargs):
def __init__(self, latent_dim: int, dataParams: dict, **kwargs):
super(AutoEncoder, self).__init__()
self.dataParams = dataParams
self.latent_dim = kwargs.get('latent_dim', 2)
self.latent_dim = latent_dim
self.encoder = Encoder(self.latent_dim)
self.decoder = Decoder(self.latent_dim, self.dataParams['features'])
@ -31,6 +27,10 @@ class AutoEncoder(Module, ABC):
class AutoEncoderLightningOverrides:
@property
def name(self):
return self.__class__.__name__
def forward(self, x):
return self.network.forward(x)

View File

@ -1,9 +1,24 @@
import torch
import pytorch_lightning as pl
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU, AvgPool2d
from abc import ABC, abstractmethod
#######################
# Abstract NN Class
class AbstractNeuralNetwork(Module):
@property
def name(self):
return self.__class__.__name__
def __init__(self):
super(AbstractNeuralNetwork, self).__init__()
def forward(self, batch):
pass
######################
# Abstract Network class following the Lightning Syntax
@ -102,6 +117,15 @@ class RNNOutputFilter(Module):
return out if not self.only_last else out[:, -1, :]
class AvgDimPool(Module):
def __init__(self):
super(AvgDimPool, self).__init__()
def forward(self, x):
return x.mean(-2)
#######################
# Network Modules
# Generators, Decoders, Encoders, Discriminators
@ -112,8 +136,8 @@ class Discriminator(Module):
self.dataParams = dataParams
self.latent_dim = latent_dim
self.l1 = Linear(self.latent_dim, self.dataParams['features'] * 10)
self.l2 = Linear(self.dataParams['features']*10, self.dataParams['features'] * 20)
self.lout = Linear(self.dataParams['features']*20, 1)
self.l2 = Linear(self.dataParams['features'] * 10, self.dataParams['features'] * 20)
self.lout = Linear(self.dataParams['features'] * 20, 1)
self.dropout = Dropout(dropout)
self.activation = activation()
self.sigmoid = Sigmoid()
@ -149,6 +173,7 @@ class EncoderLinearStack(Module):
def __init__(self):
super(EncoderLinearStack, self).__init__()
# FixMe: Get Hardcoded shit out of here
self.l1 = Linear(6, 100, bias=True)
self.l2 = Linear(100, 10, bias=True)
self.activation = ReLU()
@ -188,6 +213,31 @@ class Encoder(Module):
return tensor
class PoolingEncoder(Module):
def __init__(self, lat_dim, variational=False):
self.lat_dim = lat_dim
self.variational = variational
super(PoolingEncoder, self).__init__()
self.p = AvgDimPool()
self.l = EncoderLinearStack()
if variational:
self.mu = Linear(10, self.lat_dim)
self.logvar = Linear(10, self.lat_dim)
else:
self.lat_dim_layer = Linear(10, self.lat_dim)
def forward(self, x):
tensor = self.p(x)
tensor = self.l(tensor)
if self.variational:
tensor = self.mu(tensor), self.logvar(tensor)
else:
tensor = self.lat_dim_layer(tensor)
return tensor
class Decoder(Module):
def __init__(self, latent_dim, *args, variational=False):

View File

@ -0,0 +1,96 @@
from networks.auto_encoder import AutoEncoder
from torch.nn.functional import mse_loss
from networks.modules import *
import torch
class SeperatingAdversarialAutoEncoder(Module):
def __init__(self, latent_dim, dataParams, **kwargs):
assert latent_dim % 2 == 0, f'Your latent space needs to be even, not odd, but was: "{latent_dim}"'
super(SeperatingAdversarialAutoEncoder, self).__init__()
self.latent_dim = latent_dim
self.dataParams = dataParams
self.spatial_encoder = PoolingEncoder(self.latent_dim // 2)
self.temporal_encoder = Encoder(self.latent_dim // 2)
self.decoder = Decoder(self.latent_dim, self.dataParams['features'])
self.spatial_discriminator = Discriminator(self.latent_dim // 2, self.dataParams)
self.temporal_discriminator = Discriminator(self.latent_dim // 2, self.dataParams)
def forward(self, batch):
# Encoder
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
z_spatial, z_temporal = self.spatial_encoder(batch), self.temporal_encoder(batch)
# Decoder
# First repeat the data accordingly to the batch size
z_concat = torch.cat((z_spatial, z_temporal), dim=-1)
z_repeatet = Repeater((batch.shape[0], self.dataParams['size'], -1))(z_concat)
x_hat = self.decoder(z_repeatet)
return z_spatial, z_temporal, x_hat
class SeparatingAdversarialAELightningOverrides:
@property
def name(self):
return self.__class__.__name__
def forward(self, x):
return self.network.forward(x)
def training_step(self, batch, _, optimizer_i):
spatial_latent_fake, temporal_latent_fake, batch_hat = self.network.forward(batch)
if optimizer_i == 0:
# ---------------------
# Train temporal Discriminator
# ---------------------
# latent_fake, reconstruction
temporal_latent_real = self.normal.sample(temporal_latent_fake.shape)
# Evaluate the input
temporal_real_prediction = self.network.temporal_discriminator.forward(temporal_latent_real)
temporal_fake_prediction = self.network.temporal_discriminator.forward(temporal_latent_fake)
# Train the discriminator
temporal_loss_real = mse_loss(temporal_real_prediction, torch.zeros(temporal_real_prediction.shape))
temporal_loss_fake = mse_loss(temporal_fake_prediction, torch.ones(temporal_fake_prediction.shape))
# Calculate the mean over bot the real and the fake acc
# ToDo: do i need to compute this seperate?
d_loss = 0.5 * torch.add(temporal_loss_real, temporal_loss_fake)
return {'loss': d_loss}
if optimizer_i == 1:
# ---------------------
# Train spatial Discriminator
# ---------------------
# latent_fake, reconstruction
spatial_latent_real = self.normal.sample(spatial_latent_fake.shape)
# Evaluate the input
spatial_real_prediction = self.network.spatial_discriminator.forward(spatial_latent_real)
spatial_fake_prediction = self.network.spatial_discriminator.forward(spatial_latent_fake)
# Train the discriminator
spatial_loss_real = mse_loss(spatial_real_prediction, torch.zeros(spatial_real_prediction.shape))
spatial_loss_fake = mse_loss(spatial_fake_prediction, torch.ones(spatial_fake_prediction.shape))
# Calculate the mean over bot the real and the fake acc
# ToDo: do i need to compute this seperate?
d_loss = 0.5 * torch.add(spatial_loss_real, spatial_loss_fake)
return {'loss': d_loss}
elif optimizer_i == 2:
# ---------------------
# Train AutoEncoder
# ---------------------
loss = mse_loss(batch, batch_hat)
return {'loss': loss}
else:
raise RuntimeError('This should not have happened, catch me if u can.')
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

View File

@ -4,7 +4,7 @@ from torch.nn.functional import mse_loss
#######################
# Basic AE-Implementation
class VariationalAutoEncoder(Module, ABC):
class VariationalAutoEncoder(AbstractNeuralNetwork, ABC):
@property
def name(self):
@ -34,6 +34,10 @@ class VariationalAutoEncoder(Module, ABC):
class VariationalAutoEncoderLightningOverrides:
@property
def name(self):
return self.network.name
def forward(self, x):
return self.network.forward(x)