All models running.

This commit is contained in:
Si11ium 2019-08-24 19:05:46 +02:00
parent 7b0b96eaa3
commit 18305a9e7e
6 changed files with 45 additions and 45 deletions

View File

@ -47,8 +47,8 @@ class AbstractDataset(ConcatDataset, ABC):
# maps = ['hotel', 'tum','gallery', 'queens', 'oet']
@property
def maps(self):
return ['test', 'test2']
# return ['hotel', 'tum','gallery', 'queens', 'oet']
# return ['test', 'test2']
return ['hotel', 'tum','gallery', 'queens', 'oet']
@property
@abstractmethod

View File

@ -6,6 +6,9 @@ from networks.modules import *
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class AdversarialAutoEncoder(AutoEncoder):
def __init__(self, *args, **kwargs):
@ -32,18 +35,18 @@ class AdversarialAELightningOverrides(LightningModuleOverrides):
if optimizer_i == 0:
# ---------------------
# Train Discriminator
# ---------------------
# ---------------------p
# latent_fake, reconstruction
latent_fake, _ = self.network.forward(batch)
latent_real = self.normal.sample(latent_fake.shape)
latent_fake = self.network.encoder.forward(batch)
latent_real = self.normal.sample(latent_fake.shape).to(device)
# Evaluate the input
d_real_prediction = self.network.discriminator.forward(latent_real)
d_fake_prediction = self.network.discriminator.forward(latent_fake)
# Train the discriminator
d_loss_real = mse_loss(d_real_prediction, torch.zeros(d_real_prediction.shape))
d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape))
d_loss_real = mse_loss(d_real_prediction, torch.zeros(d_real_prediction.shape, device=device))
d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape, device=device))
# Calculate the mean over both the real and the fake acc
# ToDo: do i need to compute this seperate?

View File

@ -25,9 +25,9 @@ class LightningModuleOverrides:
@data_loader
def tng_dataloader(self):
num_workers = os.cpu_count() // 2
num_workers = 0 # os.cpu_count() // 2
return DataLoader(DataContainer('data', self.size, self.step),
shuffle=True, batch_size=100, num_workers=num_workers)
shuffle=True, batch_size=10000, num_workers=num_workers)
class AbstractNeuralNetwork(Module):

View File

@ -1,21 +1,22 @@
from torch.optim import Adam
from networks.auto_encoder import AutoEncoder
from torch.nn.functional import mse_loss
from networks.modules import *
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class SeperatingAdversarialAutoEncoder(Module):
def __init__(self, latent_dim, features, **kwargs):
def __init__(self, latent_dim, features):
super(SeperatingAdversarialAutoEncoder, self).__init__()
self.latent_dim = latent_dim
self.features = features
self.spatial_encoder = PoolingEncoder(self.latent_dim)
self.temporal_encoder = Encoder(self.latent_dim)
self.decoder = Decoder(self.latent_dim, self.features)
self.decoder = Decoder(self.latent_dim * 2, self.features)
self.spatial_discriminator = Discriminator(self.latent_dim, self.features)
self.temporal_discriminator = Discriminator(self.latent_dim, self.features)
@ -43,15 +44,17 @@ class SeparatingAdversarialAELightningOverrides(LightningModuleOverrides):
# Train temporal Discriminator
# ---------------------
# latent_fake, reconstruction
temporal_latent_real = self.normal.sample(temporal_latent_fake.shape)
temporal_latent_real = self.normal.sample(temporal_latent_fake.shape).to(device)
# Evaluate the input
temporal_real_prediction = self.network.temporal_discriminator.forward(temporal_latent_real)
temporal_fake_prediction = self.network.temporal_discriminator.forward(temporal_latent_fake)
# Train the discriminator
temporal_loss_real = mse_loss(temporal_real_prediction, torch.zeros(temporal_real_prediction.shape))
temporal_loss_fake = mse_loss(temporal_fake_prediction, torch.ones(temporal_fake_prediction.shape))
temporal_loss_real = mse_loss(temporal_real_prediction,
torch.zeros(temporal_real_prediction.shape, device=device))
temporal_loss_fake = mse_loss(temporal_fake_prediction,
torch.ones(temporal_fake_prediction.shape, device=device))
# Calculate the mean over bot the real and the fake acc
# ToDo: do i need to compute this seperate?
@ -63,15 +66,17 @@ class SeparatingAdversarialAELightningOverrides(LightningModuleOverrides):
# Train spatial Discriminator
# ---------------------
# latent_fake, reconstruction
spatial_latent_real = self.normal.sample(spatial_latent_fake.shape)
spatial_latent_real = self.normal.sample(spatial_latent_fake.shape).to(device)
# Evaluate the input
spatial_real_prediction = self.network.spatial_discriminator.forward(spatial_latent_real)
spatial_fake_prediction = self.network.spatial_discriminator.forward(spatial_latent_fake)
# Train the discriminator
spatial_loss_real = mse_loss(spatial_real_prediction, torch.zeros(spatial_real_prediction.shape))
spatial_loss_fake = mse_loss(spatial_fake_prediction, torch.ones(spatial_fake_prediction.shape))
spatial_loss_real = mse_loss(spatial_real_prediction,
torch.zeros(spatial_real_prediction.shape, device=device))
spatial_loss_fake = mse_loss(spatial_fake_prediction,
torch.ones(spatial_fake_prediction.shape, device=device))
# Calculate the mean over bot the real and the fake acc
# ToDo: do i need to compute this seperate?

View File

@ -1,37 +1,33 @@
from torch.distributions import Normal
from networks.auto_encoder import *
import os
import time
from networks.variational_auto_encoder import *
from networks.adverserial_auto_encoder import *
from networks.seperating_adversarial_auto_encoder import *
from networks.modules import LightningModule
from torch.optim import Adam
from torch.utils.data import DataLoader
from pytorch_lightning import data_loader
from dataset import DataContainer
from torch.nn import BatchNorm1d
from pytorch_lightning import Trainer
from test_tube import Experiment
from argparse import Namespace
from argparse import ArgumentParser
from distutils.util import strtobool
args = ArgumentParser()
args.add_argument('--step', default=0)
args.add_argument('--features', default=0)
args.add_argument('--size', default=0)
args.add_argument('--latent_dim', default=0)
args.add_argument('--step', default=6)
args.add_argument('--features', default=6)
args.add_argument('--size', default=9)
args.add_argument('--latent_dim', default=4)
args.add_argument('--model', default='Model')
args.add_argument('--refresh', type=strtobool, default=False)
# ToDo: How to implement this better?
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
class Model(AutoEncoderLightningOverrides, LightningModule):
def __init__(self, parameters, **kwargs):
def __init__(self, parameters):
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
self.size = parameters.size
self.latent_dim = parameters.latent_dim
@ -43,7 +39,7 @@ class Model(AutoEncoderLightningOverrides, LightningModule):
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
def __init__(self, parameters: Namespace, **kwargs):
def __init__(self, parameters: Namespace):
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
self.size = parameters.size
self.latent_dim = parameters.latent_dim
@ -57,7 +53,7 @@ class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
def __init__(self, parameters: Namespace, **kwargs):
def __init__(self, parameters: Namespace):
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
self.size = parameters.size
self.latent_dim = parameters.latent_dim
@ -65,16 +61,12 @@ class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, Ligh
self.step = parameters.step
super(SeparatingAdversarialModel, self).__init__()
self.normal = Normal(0, 1)
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features, **kwargs)
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features)
pass
if __name__ == '__main__':
features = 6
tag_dict = dict(features=features, latent_dim=4, size=5, step=6, refresh=False,
transforms=[BatchNorm1d(features)])
arguments = args.parse_args()
arguments.__dict__.update(tag_dict)
model = globals()[arguments.model](arguments)
@ -82,19 +74,19 @@ if __name__ == '__main__':
outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-'))
os.makedirs(outpath, exist_ok=True)
exp = Experiment(save_dir=outpath)
exp.tag(tag_dict=tag_dict)
exp.tag(tag_dict=arguments.__dict__)
from pytorch_lightning.callbacks import ModelCheckpoint
checkpoint_callback = ModelCheckpoint(
filepath=os.path.join(outpath, 'weights.ckpt'),
save_best_only=True,
save_best_only=False,
verbose=True,
monitor='val_loss', # val_loss
mode='min',
period=4
)
trainer = Trainer(experiment=exp, checkpoint_callback=checkpoint_callback, max_nb_epochs=15) # gpus=[0...LoL]
trainer = Trainer(experiment=exp, max_nb_epochs=250, gpus=[0],
add_log_row_interval=1000, checkpoint_callback=checkpoint_callback)
trainer.fit(model)
trainer.save_checkpoint(os.path.join(outpath, 'weights.ckpt'))

View File

@ -62,7 +62,7 @@ def load_and_predict(path_like_element):
plot.savefig(os.path.join(os.path.dirname(path_like_element), f'latent_space_{idx}.png'))
def viz_latent(prediction, title=f'Latent Space '):
def viz_latent(prediction):
if prediction.shape[-1] <= 1:
raise ValueError('How did this happen?')
elif prediction.shape[-1] == 2: