All models running.
This commit is contained in:
@ -1,37 +1,33 @@
|
||||
from torch.distributions import Normal
|
||||
|
||||
from networks.auto_encoder import *
|
||||
import os
|
||||
|
||||
import time
|
||||
from networks.variational_auto_encoder import *
|
||||
from networks.adverserial_auto_encoder import *
|
||||
from networks.seperating_adversarial_auto_encoder import *
|
||||
from networks.modules import LightningModule
|
||||
from torch.optim import Adam
|
||||
from torch.utils.data import DataLoader
|
||||
from pytorch_lightning import data_loader
|
||||
from dataset import DataContainer
|
||||
|
||||
from torch.nn import BatchNorm1d
|
||||
from pytorch_lightning import Trainer
|
||||
from test_tube import Experiment
|
||||
|
||||
from argparse import Namespace
|
||||
from argparse import ArgumentParser
|
||||
from distutils.util import strtobool
|
||||
|
||||
args = ArgumentParser()
|
||||
args.add_argument('--step', default=0)
|
||||
args.add_argument('--features', default=0)
|
||||
args.add_argument('--size', default=0)
|
||||
args.add_argument('--latent_dim', default=0)
|
||||
args.add_argument('--step', default=6)
|
||||
args.add_argument('--features', default=6)
|
||||
args.add_argument('--size', default=9)
|
||||
args.add_argument('--latent_dim', default=4)
|
||||
args.add_argument('--model', default='Model')
|
||||
args.add_argument('--refresh', type=strtobool, default=False)
|
||||
|
||||
|
||||
|
||||
# ToDo: How to implement this better?
|
||||
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
|
||||
class Model(AutoEncoderLightningOverrides, LightningModule):
|
||||
|
||||
def __init__(self, parameters, **kwargs):
|
||||
def __init__(self, parameters):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = parameters.size
|
||||
self.latent_dim = parameters.latent_dim
|
||||
@ -43,7 +39,7 @@ class Model(AutoEncoderLightningOverrides, LightningModule):
|
||||
|
||||
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
||||
|
||||
def __init__(self, parameters: Namespace, **kwargs):
|
||||
def __init__(self, parameters: Namespace):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = parameters.size
|
||||
self.latent_dim = parameters.latent_dim
|
||||
@ -57,7 +53,7 @@ class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
||||
|
||||
class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
|
||||
|
||||
def __init__(self, parameters: Namespace, **kwargs):
|
||||
def __init__(self, parameters: Namespace):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = parameters.size
|
||||
self.latent_dim = parameters.latent_dim
|
||||
@ -65,16 +61,12 @@ class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, Ligh
|
||||
self.step = parameters.step
|
||||
super(SeparatingAdversarialModel, self).__init__()
|
||||
self.normal = Normal(0, 1)
|
||||
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features, **kwargs)
|
||||
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features)
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
features = 6
|
||||
tag_dict = dict(features=features, latent_dim=4, size=5, step=6, refresh=False,
|
||||
transforms=[BatchNorm1d(features)])
|
||||
arguments = args.parse_args()
|
||||
arguments.__dict__.update(tag_dict)
|
||||
|
||||
model = globals()[arguments.model](arguments)
|
||||
|
||||
@ -82,19 +74,19 @@ if __name__ == '__main__':
|
||||
outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-'))
|
||||
os.makedirs(outpath, exist_ok=True)
|
||||
exp = Experiment(save_dir=outpath)
|
||||
exp.tag(tag_dict=tag_dict)
|
||||
exp.tag(tag_dict=arguments.__dict__)
|
||||
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint
|
||||
|
||||
checkpoint_callback = ModelCheckpoint(
|
||||
filepath=os.path.join(outpath, 'weights.ckpt'),
|
||||
save_best_only=True,
|
||||
save_best_only=False,
|
||||
verbose=True,
|
||||
monitor='val_loss', # val_loss
|
||||
mode='min',
|
||||
period=4
|
||||
)
|
||||
|
||||
trainer = Trainer(experiment=exp, checkpoint_callback=checkpoint_callback, max_nb_epochs=15) # gpus=[0...LoL]
|
||||
trainer = Trainer(experiment=exp, max_nb_epochs=250, gpus=[0],
|
||||
add_log_row_interval=1000, checkpoint_callback=checkpoint_callback)
|
||||
trainer.fit(model)
|
||||
trainer.save_checkpoint(os.path.join(outpath, 'weights.ckpt'))
|
||||
|
||||
|
Reference in New Issue
Block a user