All models running.
This commit is contained in:
@ -6,6 +6,9 @@ from networks.modules import *
|
||||
import torch
|
||||
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
|
||||
class AdversarialAutoEncoder(AutoEncoder):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
@ -32,18 +35,18 @@ class AdversarialAELightningOverrides(LightningModuleOverrides):
|
||||
if optimizer_i == 0:
|
||||
# ---------------------
|
||||
# Train Discriminator
|
||||
# ---------------------
|
||||
# ---------------------p
|
||||
# latent_fake, reconstruction
|
||||
latent_fake, _ = self.network.forward(batch)
|
||||
latent_real = self.normal.sample(latent_fake.shape)
|
||||
latent_fake = self.network.encoder.forward(batch)
|
||||
latent_real = self.normal.sample(latent_fake.shape).to(device)
|
||||
|
||||
# Evaluate the input
|
||||
d_real_prediction = self.network.discriminator.forward(latent_real)
|
||||
d_fake_prediction = self.network.discriminator.forward(latent_fake)
|
||||
|
||||
# Train the discriminator
|
||||
d_loss_real = mse_loss(d_real_prediction, torch.zeros(d_real_prediction.shape))
|
||||
d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape))
|
||||
d_loss_real = mse_loss(d_real_prediction, torch.zeros(d_real_prediction.shape, device=device))
|
||||
d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape, device=device))
|
||||
|
||||
# Calculate the mean over both the real and the fake acc
|
||||
# ToDo: do i need to compute this seperate?
|
||||
|
@ -25,9 +25,9 @@ class LightningModuleOverrides:
|
||||
|
||||
@data_loader
|
||||
def tng_dataloader(self):
|
||||
num_workers = os.cpu_count() // 2
|
||||
num_workers = 0 # os.cpu_count() // 2
|
||||
return DataLoader(DataContainer('data', self.size, self.step),
|
||||
shuffle=True, batch_size=100, num_workers=num_workers)
|
||||
shuffle=True, batch_size=10000, num_workers=num_workers)
|
||||
|
||||
|
||||
class AbstractNeuralNetwork(Module):
|
||||
|
@ -1,21 +1,22 @@
|
||||
from torch.optim import Adam
|
||||
|
||||
from networks.auto_encoder import AutoEncoder
|
||||
from torch.nn.functional import mse_loss
|
||||
from networks.modules import *
|
||||
import torch
|
||||
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
|
||||
class SeperatingAdversarialAutoEncoder(Module):
|
||||
|
||||
def __init__(self, latent_dim, features, **kwargs):
|
||||
def __init__(self, latent_dim, features):
|
||||
super(SeperatingAdversarialAutoEncoder, self).__init__()
|
||||
|
||||
self.latent_dim = latent_dim
|
||||
self.features = features
|
||||
self.spatial_encoder = PoolingEncoder(self.latent_dim)
|
||||
self.temporal_encoder = Encoder(self.latent_dim)
|
||||
self.decoder = Decoder(self.latent_dim, self.features)
|
||||
self.decoder = Decoder(self.latent_dim * 2, self.features)
|
||||
self.spatial_discriminator = Discriminator(self.latent_dim, self.features)
|
||||
self.temporal_discriminator = Discriminator(self.latent_dim, self.features)
|
||||
|
||||
@ -43,15 +44,17 @@ class SeparatingAdversarialAELightningOverrides(LightningModuleOverrides):
|
||||
# Train temporal Discriminator
|
||||
# ---------------------
|
||||
# latent_fake, reconstruction
|
||||
temporal_latent_real = self.normal.sample(temporal_latent_fake.shape)
|
||||
temporal_latent_real = self.normal.sample(temporal_latent_fake.shape).to(device)
|
||||
|
||||
# Evaluate the input
|
||||
temporal_real_prediction = self.network.temporal_discriminator.forward(temporal_latent_real)
|
||||
temporal_fake_prediction = self.network.temporal_discriminator.forward(temporal_latent_fake)
|
||||
|
||||
# Train the discriminator
|
||||
temporal_loss_real = mse_loss(temporal_real_prediction, torch.zeros(temporal_real_prediction.shape))
|
||||
temporal_loss_fake = mse_loss(temporal_fake_prediction, torch.ones(temporal_fake_prediction.shape))
|
||||
temporal_loss_real = mse_loss(temporal_real_prediction,
|
||||
torch.zeros(temporal_real_prediction.shape, device=device))
|
||||
temporal_loss_fake = mse_loss(temporal_fake_prediction,
|
||||
torch.ones(temporal_fake_prediction.shape, device=device))
|
||||
|
||||
# Calculate the mean over bot the real and the fake acc
|
||||
# ToDo: do i need to compute this seperate?
|
||||
@ -63,15 +66,17 @@ class SeparatingAdversarialAELightningOverrides(LightningModuleOverrides):
|
||||
# Train spatial Discriminator
|
||||
# ---------------------
|
||||
# latent_fake, reconstruction
|
||||
spatial_latent_real = self.normal.sample(spatial_latent_fake.shape)
|
||||
spatial_latent_real = self.normal.sample(spatial_latent_fake.shape).to(device)
|
||||
|
||||
# Evaluate the input
|
||||
spatial_real_prediction = self.network.spatial_discriminator.forward(spatial_latent_real)
|
||||
spatial_fake_prediction = self.network.spatial_discriminator.forward(spatial_latent_fake)
|
||||
|
||||
# Train the discriminator
|
||||
spatial_loss_real = mse_loss(spatial_real_prediction, torch.zeros(spatial_real_prediction.shape))
|
||||
spatial_loss_fake = mse_loss(spatial_fake_prediction, torch.ones(spatial_fake_prediction.shape))
|
||||
spatial_loss_real = mse_loss(spatial_real_prediction,
|
||||
torch.zeros(spatial_real_prediction.shape, device=device))
|
||||
spatial_loss_fake = mse_loss(spatial_fake_prediction,
|
||||
torch.ones(spatial_fake_prediction.shape, device=device))
|
||||
|
||||
# Calculate the mean over bot the real and the fake acc
|
||||
# ToDo: do i need to compute this seperate?
|
||||
|
Reference in New Issue
Block a user