Final Train Runs
This commit is contained in:
@@ -1,3 +1,6 @@
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
from abc import ABC
|
||||
|
||||
import torch
|
||||
@@ -42,24 +45,67 @@ class ValMixin:
|
||||
model_out = self(batch_x)
|
||||
y = model_out.main_out
|
||||
|
||||
sorted_y = defaultdict(list)
|
||||
sorted_batch_y = dict()
|
||||
for idx, file_name in enumerate(batch_files):
|
||||
sorted_y[file_name].append(y[idx])
|
||||
sorted_batch_y.update({file_name: batch_y[idx]})
|
||||
sorted_y = dict(sorted_y)
|
||||
|
||||
for file_name in sorted_y:
|
||||
sorted_y.update({file_name: torch.stack(sorted_y[file_name])})
|
||||
|
||||
y_max = torch.stack(
|
||||
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
|
||||
).squeeze()
|
||||
y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=5).float()
|
||||
self.metrics.update(y_one_hot, torch.stack(tuple(sorted_batch_y.values())).long())
|
||||
|
||||
val_loss = self.ce_loss(y, batch_y.long())
|
||||
|
||||
self.metrics.update(y, batch_y) # torch.argmax(y, -1), batch_y)
|
||||
|
||||
return dict(val_loss=val_loss, batch_files=batch_files,
|
||||
return dict(batch_files=batch_files, val_loss=val_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
||||
|
||||
def validation_epoch_end(self, outputs, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
summary_dict = dict()
|
||||
|
||||
keys = list(outputs[0].keys())
|
||||
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
|
||||
sorted_y = defaultdict(list)
|
||||
sorted_batch_y = dict()
|
||||
for output in outputs:
|
||||
for idx, file_name in enumerate(output['batch_files']):
|
||||
sorted_y[file_name].append(output['y'][idx])
|
||||
sorted_batch_y.update({file_name: output['batch_y'][idx]})
|
||||
sorted_y = dict(sorted_y)
|
||||
sorted_batch_y = torch.stack(tuple(sorted_batch_y.values())).long()
|
||||
|
||||
for file_name in sorted_y:
|
||||
sorted_y.update({file_name: torch.stack(sorted_y[file_name])})
|
||||
|
||||
y_mean = torch.stack(
|
||||
[torch.mean(x, dim=0, keepdim=True) if x.shape[0] > 1 else x for x in sorted_y.values()]
|
||||
).squeeze()
|
||||
mean_vote_loss = self.ce_loss(y_mean, sorted_batch_y)
|
||||
summary_dict.update(val_mean_vote_loss=mean_vote_loss)
|
||||
|
||||
y_max = torch.stack(
|
||||
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
|
||||
).squeeze()
|
||||
y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=5).float()
|
||||
max_vote_loss = self.ce_loss(y_one_hot, sorted_batch_y)
|
||||
summary_dict.update(val_max_vote_loss=max_vote_loss)
|
||||
|
||||
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
# Sklearn Scores
|
||||
additional_scores = self.additional_scores(outputs)
|
||||
additional_scores = self.additional_scores(dict(y=y_one_hot, batch_y=sorted_batch_y))
|
||||
summary_dict.update(**additional_scores)
|
||||
|
||||
pl_metrics, pl_images = self.metrics.compute_and_prepare()
|
||||
@@ -85,13 +131,40 @@ class TestMixin:
|
||||
|
||||
def test_epoch_end(self, outputs, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
|
||||
y_arg_max = torch.argmax(outputs[0]['y'])
|
||||
|
||||
pd.DataFrame(data=dict(filenames=outputs[0]['batch_files'], predtiction=y_arg_max))
|
||||
|
||||
# No logging, just inference.
|
||||
# self.log_dict(summary_dict, on_epoch=True)
|
||||
|
||||
sorted_y = defaultdict(list)
|
||||
for output in outputs:
|
||||
for idx, file_name in enumerate(output['batch_files']):
|
||||
sorted_y[file_name].append(output['y'][idx].cpu())
|
||||
sorted_y = dict(sorted_y)
|
||||
|
||||
for file_name in sorted_y:
|
||||
sorted_y.update({file_name: torch.stack(sorted_y[file_name])})
|
||||
|
||||
y_max = torch.stack(
|
||||
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
|
||||
).squeeze().cpu()
|
||||
class_names = {val: key for val, key in enumerate(['background', 'chimpanze', 'geunon', 'mandrille', 'redcap'])}
|
||||
|
||||
df = pd.DataFrame(data=dict(filenames=[Path(x).stem for x in sorted_y.keys()],
|
||||
prediction=y_max.cpu().numpy(),
|
||||
prediction_named=[class_names[x.item()] for x in y_max.cpu().numpy()]))
|
||||
result_file = Path(self.logger.log_dir / 'predictions.csv')
|
||||
if result_file.exists():
|
||||
try:
|
||||
result_file.unlink()
|
||||
except:
|
||||
print('File allready existed')
|
||||
pass
|
||||
with result_file.open(mode='wb') as csv_file:
|
||||
df.to_csv(index=False, path_or_buf=csv_file)
|
||||
with result_file.open(mode='rb') as csv_file:
|
||||
try:
|
||||
self.logger.neptunelogger.log_artifact(csv_file)
|
||||
except:
|
||||
print('No possible to send to neptune')
|
||||
pass
|
||||
|
||||
|
||||
class CombinedModelMixins(LossMixin,
|
||||
|
||||
@@ -24,11 +24,16 @@ class OptimizerMixin:
|
||||
if self.params.sto_weight_avg:
|
||||
optimizer = SWA(optimizer, swa_start=10, swa_freq=5, swa_lr=0.05)
|
||||
optimizer_dict.update(optimizer=optimizer)
|
||||
if self.params.lr_warm_restart_epochs:
|
||||
scheduler = CosineAnnealingWarmRestarts(optimizer, self.params.lr_warm_restart_epochs)
|
||||
|
||||
if self.params.scheduler == CosineAnnealingWarmRestarts.__name__:
|
||||
scheduler = CosineAnnealingWarmRestarts(optimizer, self.params.lr_scheduler_parameter)
|
||||
elif self.params.scheduler == LambdaLR.__name__:
|
||||
lr_reduce_ratio = self.params.lr_scheduler_parameter
|
||||
scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: lr_reduce_ratio ** epoch)
|
||||
else:
|
||||
scheduler = LambdaLR(optimizer, lr_lambda=lambda epoch: 0.95 ** epoch)
|
||||
optimizer_dict.update(lr_scheduler=scheduler)
|
||||
scheduler = None
|
||||
if scheduler:
|
||||
optimizer_dict.update(lr_scheduler=scheduler)
|
||||
return optimizer_dict
|
||||
|
||||
def on_train_end(self):
|
||||
|
||||
Reference in New Issue
Block a user