178 lines
6.9 KiB
Python
178 lines
6.9 KiB
Python
from collections import defaultdict
|
|
from pathlib import Path
|
|
|
|
from abc import ABC
|
|
|
|
import torch
|
|
import pandas as pd
|
|
|
|
from ml_lib.modules.util import LightningBaseModule
|
|
from util.loss_mixin import LossMixin
|
|
from util.optimizer_mixin import OptimizerMixin
|
|
|
|
|
|
class TrainMixin:
|
|
|
|
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
|
assert isinstance(self, LightningBaseModule)
|
|
batch_files, batch_x, batch_y = batch_xy
|
|
y = self(batch_x).main_out
|
|
|
|
if self.params.loss == 'focal_loss_rob':
|
|
labels_one_hot = torch.nn.functional.one_hot(batch_y, num_classes=5)
|
|
loss = self.__getattribute__(self.params.loss)(y, labels_one_hot)
|
|
else:
|
|
loss = self.__getattribute__(self.params.loss)(y, batch_y.long())
|
|
|
|
return dict(loss=loss)
|
|
|
|
def training_epoch_end(self, outputs):
|
|
assert isinstance(self, LightningBaseModule)
|
|
keys = list(outputs[0].keys())
|
|
|
|
summary_dict = {f'mean_{key}': torch.mean(torch.stack([output[key]
|
|
for output in outputs]))
|
|
for key in keys if 'loss' in key}
|
|
summary_dict.update(epoch=self.current_epoch)
|
|
self.log_dict(summary_dict)
|
|
|
|
|
|
class ValMixin:
|
|
|
|
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
|
assert isinstance(self, LightningBaseModule)
|
|
batch_files, batch_x, batch_y = batch_xy
|
|
model_out = self(batch_x)
|
|
y = model_out.main_out
|
|
|
|
sorted_y = defaultdict(list)
|
|
sorted_batch_y = dict()
|
|
for idx, file_name in enumerate(batch_files):
|
|
sorted_y[file_name].append(y[idx])
|
|
sorted_batch_y.update({file_name: batch_y[idx]})
|
|
sorted_y = dict(sorted_y)
|
|
|
|
for file_name in sorted_y:
|
|
sorted_y.update({file_name: torch.stack(sorted_y[file_name])})
|
|
|
|
y_max = torch.stack(
|
|
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
|
|
).squeeze()
|
|
y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=5).float()
|
|
self.metrics.update(y_one_hot, torch.stack(tuple(sorted_batch_y.values())).long())
|
|
|
|
val_loss = self.ce_loss(y, batch_y.long())
|
|
|
|
return dict(batch_files=batch_files, val_loss=val_loss,
|
|
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
|
|
|
def validation_epoch_end(self, outputs, *_, **__):
|
|
assert isinstance(self, LightningBaseModule)
|
|
summary_dict = dict()
|
|
keys = list(outputs[0].keys())
|
|
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
|
for output in outputs]))
|
|
for key in keys if 'loss' in key}
|
|
)
|
|
|
|
sorted_y = defaultdict(list)
|
|
sorted_batch_y = dict()
|
|
for output in outputs:
|
|
for idx, file_name in enumerate(output['batch_files']):
|
|
sorted_y[file_name].append(output['y'][idx])
|
|
sorted_batch_y.update({file_name: output['batch_y'][idx]})
|
|
sorted_y = dict(sorted_y)
|
|
sorted_batch_y = torch.stack(tuple(sorted_batch_y.values())).long()
|
|
|
|
for file_name in sorted_y:
|
|
sorted_y.update({file_name: torch.stack(sorted_y[file_name])})
|
|
|
|
y_mean = torch.stack(
|
|
[torch.mean(x, dim=0, keepdim=True) if x.shape[0] > 1 else x for x in sorted_y.values()]
|
|
).squeeze()
|
|
mean_vote_loss = self.ce_loss(y_mean, sorted_batch_y)
|
|
summary_dict.update(val_mean_vote_loss=mean_vote_loss)
|
|
|
|
y_max = torch.stack(
|
|
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
|
|
).squeeze()
|
|
y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=5).float()
|
|
max_vote_loss = self.ce_loss(y_one_hot, sorted_batch_y)
|
|
summary_dict.update(val_max_vote_loss=max_vote_loss)
|
|
|
|
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
|
for output in outputs]))
|
|
for key in keys if 'loss' in key}
|
|
)
|
|
# Sklearn Scores
|
|
additional_scores = self.additional_scores(dict(y=y_one_hot, batch_y=sorted_batch_y))
|
|
summary_dict.update(**additional_scores)
|
|
|
|
pl_metrics, pl_images = self.metrics.compute_and_prepare()
|
|
self.metrics.reset()
|
|
summary_dict.update(**pl_metrics)
|
|
summary_dict.update(epoch=self.current_epoch)
|
|
|
|
self.log_dict(summary_dict, on_epoch=True)
|
|
|
|
for name, image in pl_images.items():
|
|
self.logger.log_image(name, image, step=self.global_step)
|
|
pass
|
|
|
|
|
|
class TestMixin:
|
|
|
|
def test_step(self, batch_xy, batch_idx, *_, **__):
|
|
assert isinstance(self, LightningBaseModule)
|
|
batch_files, batch_x, batch_y = batch_xy
|
|
model_out = self(batch_x)
|
|
y = model_out.main_out
|
|
return dict(batch_files=batch_files, batch_idx=batch_idx, y=y)
|
|
|
|
def test_epoch_end(self, outputs, *_, **__):
|
|
assert isinstance(self, LightningBaseModule)
|
|
# No logging, just inference.
|
|
|
|
sorted_y = defaultdict(list)
|
|
for output in outputs:
|
|
for idx, file_name in enumerate(output['batch_files']):
|
|
sorted_y[file_name].append(output['y'][idx].cpu())
|
|
sorted_y = dict(sorted_y)
|
|
|
|
for file_name in sorted_y:
|
|
sorted_y.update({file_name: torch.stack(sorted_y[file_name])})
|
|
|
|
y_max = torch.stack(
|
|
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
|
|
).squeeze().cpu()
|
|
class_names = {val: key for val, key in enumerate(['background', 'chimpanze', 'geunon', 'mandrille', 'redcap'])}
|
|
|
|
df = pd.DataFrame(data=dict(filenames=[Path(x).stem for x in sorted_y.keys()],
|
|
prediction=y_max.cpu().numpy(),
|
|
prediction_named=[class_names[x.item()] for x in y_max.cpu().numpy()]))
|
|
result_file = Path(self.logger.log_dir / 'predictions.csv')
|
|
if result_file.exists():
|
|
try:
|
|
result_file.unlink()
|
|
except:
|
|
print('File allready existed')
|
|
pass
|
|
with result_file.open(mode='wb') as csv_file:
|
|
df.to_csv(index=False, path_or_buf=csv_file)
|
|
with result_file.open(mode='rb') as csv_file:
|
|
try:
|
|
self.logger.neptunelogger.log_artifact(csv_file)
|
|
except:
|
|
print('No possible to send to neptune')
|
|
pass
|
|
|
|
|
|
class CombinedModelMixins(LossMixin,
|
|
TrainMixin,
|
|
ValMixin,
|
|
TestMixin,
|
|
OptimizerMixin,
|
|
LightningBaseModule,
|
|
ABC):
|
|
pass
|