Dataset rdy
This commit is contained in:
95
util/module_mixins.py
Normal file
95
util/module_mixins.py
Normal file
@@ -0,0 +1,95 @@
|
||||
from abc import ABC
|
||||
|
||||
import torch
|
||||
|
||||
from ml_lib.modules.util import LightningBaseModule
|
||||
from util.loss_mixin import LossMixin
|
||||
from util.optimizer_mixin import OptimizerMixin
|
||||
|
||||
|
||||
class TrainMixin:
|
||||
|
||||
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
y = self(batch_x).main_out
|
||||
loss = self.ce_loss(y.squeeze(), batch_y.long())
|
||||
return dict(loss=loss)
|
||||
|
||||
def training_epoch_end(self, outputs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
keys = list(outputs[0].keys())
|
||||
|
||||
summary_dict = {f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key}
|
||||
for key in summary_dict.keys():
|
||||
self.log(key, summary_dict[key])
|
||||
|
||||
|
||||
class ValMixin:
|
||||
|
||||
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
model_out = self(batch_x)
|
||||
y = model_out.main_out
|
||||
|
||||
val_loss = self.ce_loss(y.squeeze(), batch_y.long())
|
||||
|
||||
return dict(val_loss=val_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
||||
|
||||
def validation_epoch_end(self, outputs, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
summary_dict = dict()
|
||||
|
||||
keys = list(outputs[0].keys())
|
||||
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
|
||||
additional_scores = self.additional_scores(outputs)
|
||||
summary_dict.update(**additional_scores)
|
||||
|
||||
for key in summary_dict.keys():
|
||||
self.log(key, summary_dict[key])
|
||||
|
||||
|
||||
class TestMixin:
|
||||
|
||||
def test_step(self, batch_xy, batch_idx, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
batch_x, batch_y = batch_xy
|
||||
model_out = self(batch_x)
|
||||
y = model_out.main_out
|
||||
test_loss = self.ce_loss(y.squeeze(), batch_y.long())
|
||||
return dict(test_loss=test_loss,
|
||||
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
||||
|
||||
def test_epoch_end(self, outputs, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
summary_dict = dict()
|
||||
|
||||
keys = list(outputs[0].keys())
|
||||
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||
for output in outputs]))
|
||||
for key in keys if 'loss' in key}
|
||||
)
|
||||
|
||||
additional_scores = self.additional_scores(outputs)
|
||||
summary_dict.update(**additional_scores)
|
||||
|
||||
for key in summary_dict.keys():
|
||||
self.log(key, summary_dict[key])
|
||||
|
||||
|
||||
class CombinedModelMixins(LossMixin,
|
||||
TrainMixin,
|
||||
ValMixin,
|
||||
TestMixin,
|
||||
OptimizerMixin,
|
||||
LightningBaseModule,
|
||||
ABC):
|
||||
pass
|
||||
Reference in New Issue
Block a user