Steffen Illium 7edd3834a1 Dataset rdy
2021-02-16 10:18:04 +01:00

96 lines
3.2 KiB
Python

from abc import ABC
import torch
from ml_lib.modules.util import LightningBaseModule
from util.loss_mixin import LossMixin
from util.optimizer_mixin import OptimizerMixin
class TrainMixin:
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
assert isinstance(self, LightningBaseModule)
batch_x, batch_y = batch_xy
y = self(batch_x).main_out
loss = self.ce_loss(y.squeeze(), batch_y.long())
return dict(loss=loss)
def training_epoch_end(self, outputs):
assert isinstance(self, LightningBaseModule)
keys = list(outputs[0].keys())
summary_dict = {f'mean_{key}': torch.mean(torch.stack([output[key]
for output in outputs]))
for key in keys if 'loss' in key}
for key in summary_dict.keys():
self.log(key, summary_dict[key])
class ValMixin:
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
assert isinstance(self, LightningBaseModule)
batch_x, batch_y = batch_xy
model_out = self(batch_x)
y = model_out.main_out
val_loss = self.ce_loss(y.squeeze(), batch_y.long())
return dict(val_loss=val_loss,
batch_idx=batch_idx, y=y, batch_y=batch_y)
def validation_epoch_end(self, outputs, *_, **__):
assert isinstance(self, LightningBaseModule)
summary_dict = dict()
keys = list(outputs[0].keys())
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
for output in outputs]))
for key in keys if 'loss' in key}
)
additional_scores = self.additional_scores(outputs)
summary_dict.update(**additional_scores)
for key in summary_dict.keys():
self.log(key, summary_dict[key])
class TestMixin:
def test_step(self, batch_xy, batch_idx, *_, **__):
assert isinstance(self, LightningBaseModule)
batch_x, batch_y = batch_xy
model_out = self(batch_x)
y = model_out.main_out
test_loss = self.ce_loss(y.squeeze(), batch_y.long())
return dict(test_loss=test_loss,
batch_idx=batch_idx, y=y, batch_y=batch_y)
def test_epoch_end(self, outputs, *_, **__):
assert isinstance(self, LightningBaseModule)
summary_dict = dict()
keys = list(outputs[0].keys())
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
for output in outputs]))
for key in keys if 'loss' in key}
)
additional_scores = self.additional_scores(outputs)
summary_dict.update(**additional_scores)
for key in summary_dict.keys():
self.log(key, summary_dict[key])
class CombinedModelMixins(LossMixin,
TrainMixin,
ValMixin,
TestMixin,
OptimizerMixin,
LightningBaseModule,
ABC):
pass