96 lines
3.2 KiB
Python
96 lines
3.2 KiB
Python
from abc import ABC
|
|
|
|
import torch
|
|
|
|
from ml_lib.modules.util import LightningBaseModule
|
|
from util.loss_mixin import LossMixin
|
|
from util.optimizer_mixin import OptimizerMixin
|
|
|
|
|
|
class TrainMixin:
|
|
|
|
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
|
|
assert isinstance(self, LightningBaseModule)
|
|
batch_x, batch_y = batch_xy
|
|
y = self(batch_x).main_out
|
|
loss = self.ce_loss(y.squeeze(), batch_y.long())
|
|
return dict(loss=loss)
|
|
|
|
def training_epoch_end(self, outputs):
|
|
assert isinstance(self, LightningBaseModule)
|
|
keys = list(outputs[0].keys())
|
|
|
|
summary_dict = {f'mean_{key}': torch.mean(torch.stack([output[key]
|
|
for output in outputs]))
|
|
for key in keys if 'loss' in key}
|
|
for key in summary_dict.keys():
|
|
self.log(key, summary_dict[key])
|
|
|
|
|
|
class ValMixin:
|
|
|
|
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
|
|
assert isinstance(self, LightningBaseModule)
|
|
batch_x, batch_y = batch_xy
|
|
model_out = self(batch_x)
|
|
y = model_out.main_out
|
|
|
|
val_loss = self.ce_loss(y.squeeze(), batch_y.long())
|
|
|
|
return dict(val_loss=val_loss,
|
|
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
|
|
|
def validation_epoch_end(self, outputs, *_, **__):
|
|
assert isinstance(self, LightningBaseModule)
|
|
summary_dict = dict()
|
|
|
|
keys = list(outputs[0].keys())
|
|
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
|
for output in outputs]))
|
|
for key in keys if 'loss' in key}
|
|
)
|
|
|
|
additional_scores = self.additional_scores(outputs)
|
|
summary_dict.update(**additional_scores)
|
|
|
|
for key in summary_dict.keys():
|
|
self.log(key, summary_dict[key])
|
|
|
|
|
|
class TestMixin:
|
|
|
|
def test_step(self, batch_xy, batch_idx, *_, **__):
|
|
assert isinstance(self, LightningBaseModule)
|
|
batch_x, batch_y = batch_xy
|
|
model_out = self(batch_x)
|
|
y = model_out.main_out
|
|
test_loss = self.ce_loss(y.squeeze(), batch_y.long())
|
|
return dict(test_loss=test_loss,
|
|
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
|
|
|
def test_epoch_end(self, outputs, *_, **__):
|
|
assert isinstance(self, LightningBaseModule)
|
|
summary_dict = dict()
|
|
|
|
keys = list(outputs[0].keys())
|
|
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
|
for output in outputs]))
|
|
for key in keys if 'loss' in key}
|
|
)
|
|
|
|
additional_scores = self.additional_scores(outputs)
|
|
summary_dict.update(**additional_scores)
|
|
|
|
for key in summary_dict.keys():
|
|
self.log(key, summary_dict[key])
|
|
|
|
|
|
class CombinedModelMixins(LossMixin,
|
|
TrainMixin,
|
|
ValMixin,
|
|
TestMixin,
|
|
OptimizerMixin,
|
|
LightningBaseModule,
|
|
ABC):
|
|
pass
|