now offering "normals" in sample dict
This commit is contained in:
parent
0f28969ec7
commit
9c100b6c43
6
.gitignore
vendored
6
.gitignore
vendored
@ -127,4 +127,8 @@ dmypy.json
|
||||
/data/
|
||||
/checkpoint/
|
||||
/shapenet/
|
||||
/vis/
|
||||
/vis/data/
|
||||
/vis/checkpoint
|
||||
/predict/data/
|
||||
/predict/checkpoint/
|
||||
|
||||
|
3
.idea/pointnet2-pytorch.iml
generated
3
.idea/pointnet2-pytorch.iml
generated
@ -4,7 +4,8 @@
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/data" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/net" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/vis" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/predict/data" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/shapenet" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.7 (torch)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
|
@ -14,9 +14,8 @@ import re
|
||||
|
||||
|
||||
def save_names(name_list, path):
|
||||
with open(path, 'wb'):
|
||||
pass
|
||||
|
||||
with open(path, 'wb') as f:
|
||||
f.writelines(name_list)
|
||||
|
||||
class CustomShapeNet(InMemoryDataset):
|
||||
|
||||
@ -119,20 +118,16 @@ class CustomShapeNet(InMemoryDataset):
|
||||
points = torch.tensor(src, dtype=None).squeeze()
|
||||
if not len(points.shape) > 1:
|
||||
continue
|
||||
# pos = points[:, :3]
|
||||
# norm = points[:, 3:]
|
||||
y_all = [y_raw] * points.shape[0]
|
||||
y = torch.as_tensor(y_all, dtype=torch.int)
|
||||
# points = torch.as_tensor(points, dtype=torch.float)
|
||||
# norm = torch.as_tensor(norm, dtype=torch.float)
|
||||
if self.collate_per_element:
|
||||
data = Data(y=y, pos=points[:, :3])
|
||||
data = Data(y=y, pos=points[:, :3], points=points, norm=points[:, 3:])
|
||||
else:
|
||||
if not data:
|
||||
data = defaultdict(list)
|
||||
for key, val in dict(y=y, pos= points[:, :3]).items():
|
||||
for key, val in dict(y=y, pos=points[:, :3], points=points, norm=points[:, 3:]).items():
|
||||
data[key].append(val)
|
||||
# , points=points, norm=points[:3], )
|
||||
|
||||
data = self._transform_and_filter(data)
|
||||
if self.collate_per_element:
|
||||
datasets[data_folder].append(data)
|
||||
@ -160,7 +155,7 @@ class ShapeNetPartSegDataset(Dataset):
|
||||
|
||||
def __getitem__(self, index):
|
||||
data = self.dataset[index]
|
||||
points, labels = data.pos, data.y
|
||||
points, labels, _, norm = data.pos, data.y, data.points, data.norm
|
||||
|
||||
# Resample to fixed number of points
|
||||
try:
|
||||
@ -168,13 +163,14 @@ class ShapeNetPartSegDataset(Dataset):
|
||||
except ValueError:
|
||||
choice = []
|
||||
|
||||
points, labels = points[choice, :], labels[choice]
|
||||
points, labels, norm = points[choice, :], labels[choice], norm[choice]
|
||||
|
||||
labels -= 1 if self.num_classes() in labels else 0 # Map label from [1, C] to [0, C-1]
|
||||
|
||||
sample = {
|
||||
'points': points, # torch.Tensor (n, 3)
|
||||
'labels': labels # torch.Tensor (n,)
|
||||
'labels': labels, # torch.Tensor (n,)
|
||||
'normals': norm # torch.Tensor (n,)
|
||||
}
|
||||
|
||||
return sample
|
||||
@ -188,11 +184,12 @@ class ShapeNetPartSegDataset(Dataset):
|
||||
|
||||
class PredictionShapeNet(InMemoryDataset):
|
||||
|
||||
def __init__(self, root, transform=None, pre_filter=None, pre_transform=None, headers=True):
|
||||
def __init__(self, root, transform=None, pre_filter=None, pre_transform=None, headers=True, refresh=False):
|
||||
self.has_headers = headers
|
||||
self.refresh = refresh
|
||||
super(PredictionShapeNet, self).__init__(root, transform, pre_transform, pre_filter)
|
||||
path = self.processed_paths[0]
|
||||
self.data, self.slices = torch.load(path)
|
||||
self.data, self.slices = self._load_dataset()
|
||||
print("Initialized")
|
||||
|
||||
@property
|
||||
@ -217,9 +214,18 @@ class PredictionShapeNet(InMemoryDataset):
|
||||
|
||||
def _load_dataset(self):
|
||||
data, slices = None, None
|
||||
filepath = os.path.join(self.processed_dir, self.processed_file_names[0])
|
||||
if self.refresh:
|
||||
try:
|
||||
os.remove(filepath)
|
||||
print('Processed Location "Refreshed" (We deleted the Files)')
|
||||
except FileNotFoundError:
|
||||
print('You meant to refresh the allready processed dataset, but there were none...')
|
||||
print('continue processing')
|
||||
pass
|
||||
|
||||
while True:
|
||||
try:
|
||||
filepath = os.path.join(self.root, self.processed_dir, f'{"train" if self.train else "test"}.pt')
|
||||
data, slices = torch.load(filepath)
|
||||
print('Dataset Loaded')
|
||||
break
|
||||
@ -243,7 +249,7 @@ class PredictionShapeNet(InMemoryDataset):
|
||||
for pointcloud in tqdm(os.scandir(path_to_clouds)):
|
||||
if not os.path.isdir(pointcloud):
|
||||
continue
|
||||
full_cloud_pattern = '\d+?_pc\.(xyz|dat)'
|
||||
full_cloud_pattern = '(^\d+?_|^)pc\.(xyz|dat)'
|
||||
pattern = re.compile(full_cloud_pattern)
|
||||
for file in os.scandir(pointcloud.path):
|
||||
if not pattern.match(file.name):
|
||||
@ -267,7 +273,7 @@ class PredictionShapeNet(InMemoryDataset):
|
||||
y = torch.as_tensor(y_fake_all, dtype=torch.int)
|
||||
# points = torch.as_tensor(points, dtype=torch.float)
|
||||
# norm = torch.as_tensor(norm, dtype=torch.float)
|
||||
data = Data(y=y, pos=points[:, :3])
|
||||
data = Data(y=y, pos=points[:, :3], points=points, norm=points[:, 3:])
|
||||
# , points=points, norm=points[:3], )
|
||||
# ToDo: ANy filter to apply? Then do it here.
|
||||
if self.pre_filter is not None and not self.pre_filter(data):
|
||||
@ -293,29 +299,20 @@ class PredictNetPartSegDataset(Dataset):
|
||||
Resample raw point cloud to fixed number of points.
|
||||
Map raw label from range [1, N] to [0, N-1].
|
||||
"""
|
||||
def __init__(self, root_dir, num_classes, transform=None, npoints=2048, headers=True):
|
||||
def __init__(self, root_dir, num_classes, transform=None, npoints=2048, headers=True, refresh=False):
|
||||
super(PredictNetPartSegDataset, self).__init__()
|
||||
self.npoints = npoints
|
||||
self._num_classes = num_classes
|
||||
self.dataset = PredictionShapeNet(root=root_dir, transform=transform, headers=headers)
|
||||
self.dataset = PredictionShapeNet(root=root_dir, transform=transform, headers=headers, refresh=refresh)
|
||||
|
||||
def __getitem__(self, index):
|
||||
data = self.dataset[index]
|
||||
points, labels = data.pos, data.y
|
||||
|
||||
# Resample to fixed number of points
|
||||
try:
|
||||
choice = np.random.choice(points.shape[0], self.npoints, replace=True)
|
||||
except ValueError:
|
||||
choice = []
|
||||
|
||||
points, labels = points[choice, :], labels[choice]
|
||||
|
||||
labels -= 1 if self.num_classes() in labels else 0 # Map label from [1, C] to [0, C-1]
|
||||
points, labels, _, norm = data.pos, data.y, data.points, data.norm
|
||||
|
||||
sample = {
|
||||
'points': points, # torch.Tensor (n, 3)
|
||||
'labels': labels # torch.Tensor (n,)
|
||||
'labels': labels, # torch.Tensor (n,)
|
||||
'normals': norm # torch.Tensor (n,)
|
||||
}
|
||||
return sample
|
||||
|
||||
|
Binary file not shown.
@ -28,7 +28,8 @@ if __name__ == '__main__':
|
||||
root_dir=opt.dataset,
|
||||
num_classes=4,
|
||||
transform=None,
|
||||
npoints=opt.npoints
|
||||
npoints=opt.npoints,
|
||||
refresh=True
|
||||
)
|
||||
num_classes = test_dataset.num_classes()
|
||||
|
||||
|
@ -134,7 +134,7 @@ if __name__ == '__main__':
|
||||
print(diff_labels)
|
||||
view_points_labels(points, diff_labels)
|
||||
|
||||
if False:
|
||||
if True:
|
||||
print('View pred labels ..')
|
||||
print(pred_labels)
|
||||
view_points_labels(points, pred_labels)
|
||||
|
Loading…
x
Reference in New Issue
Block a user