Merge remote-tracking branch 'origin/master'
# Conflicts: # predict/predict.py
This commit is contained in:
		| @@ -24,13 +24,15 @@ class CustomShapeNet(InMemoryDataset): | ||||
|     modes = {key: val for val, key in enumerate(['train', 'test', 'predict'])} | ||||
|  | ||||
|     def __init__(self, root_dir, collate_per_segment=True, mode='train', transform=None, pre_filter=None, | ||||
|                  pre_transform=None, headers=True, has_variations=False, refresh=False, labels_within=False): | ||||
|                  pre_transform=None, headers=True, has_variations=False, refresh=False, labels_within=False, | ||||
|                  with_normals=False): | ||||
|         assert mode in self.modes.keys(), f'"mode" must be one of {self.modes.keys()}' | ||||
|         assert not (collate_per_segment and has_variations), 'Either use each element or pointclouds - with variations' | ||||
|  | ||||
|         #Set the Dataset Parameters | ||||
|         self.has_headers, self.has_variations, self.labels_within = headers, has_variations, labels_within | ||||
|         self.collate_per_element, self.mode, self.refresh = collate_per_segment, mode, refresh | ||||
|         self.with_normals = with_normals | ||||
|         super(CustomShapeNet, self).__init__(root_dir, transform, pre_transform, pre_filter) | ||||
|         self.data, self.slices = self._load_dataset() | ||||
|         print("Initialized") | ||||
| @@ -38,16 +40,17 @@ class CustomShapeNet(InMemoryDataset): | ||||
|     @property | ||||
|     def raw_file_names(self): | ||||
|         # Maybe add more data like validation sets | ||||
|         return list(self.modes.keys()) | ||||
|         return [self.mode] | ||||
|  | ||||
|     @property | ||||
|     def processed_file_names(self): | ||||
|         return [f'{x}.pt' for x in self.raw_file_names] | ||||
|         return [f'{self.mode}.pt'] | ||||
|  | ||||
|     def download(self): | ||||
|         dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))]) | ||||
|         print(f'{dir_count} folders have been found....') | ||||
|  | ||||
|         if dir_count: | ||||
|             print(f'{dir_count} folders have been found....') | ||||
|             return dir_count | ||||
|         raise IOError("No raw pointclouds have been found.") | ||||
|  | ||||
| @@ -57,7 +60,7 @@ class CustomShapeNet(InMemoryDataset): | ||||
|  | ||||
|     def _load_dataset(self): | ||||
|         data, slices = None, None | ||||
|         filepath = self.processed_paths[self.modes[self.mode]] | ||||
|         filepath = self.processed_paths[0] | ||||
|         if self.refresh: | ||||
|             try: | ||||
|                 os.remove(filepath) | ||||
| @@ -90,7 +93,7 @@ class CustomShapeNet(InMemoryDataset): | ||||
|  | ||||
|     def process(self, delimiter=' '): | ||||
|         datasets = defaultdict(list) | ||||
|         idx, data_folder = self.modes[self.mode], self.raw_file_names[self.modes[self.mode]] | ||||
|         idx, data_folder = self.modes[self.mode], self.raw_file_names[0] | ||||
|         path_to_clouds = os.path.join(self.raw_dir, data_folder) | ||||
|  | ||||
|         if '.headers' in os.listdir(path_to_clouds): | ||||
| @@ -110,8 +113,8 @@ class CustomShapeNet(InMemoryDataset): | ||||
|                 paths.extend(glob.glob(os.path.join(pointcloud.path, f'*.{ext}'))) | ||||
|  | ||||
|             for element in paths: | ||||
|                 # This was build to filter all variations that aregreater then 25 | ||||
|                 pattern = re.compile('^((6[0-1]|[1-5][0-9])_\w+?\d+?|\d+?_pc)\.(xyz|dat)$') | ||||
|                 # This was build to filter all full clouds | ||||
|                 pattern = re.compile('^\d+?_pc\.(xyz|dat)$') | ||||
|                 if pattern.match(os.path.split(element)[-1]): | ||||
|                     continue | ||||
|                 else: | ||||
| @@ -142,9 +145,10 @@ class CustomShapeNet(InMemoryDataset): | ||||
|                             y_all = [-1] * points.shape[0] | ||||
|  | ||||
|                     y = torch.as_tensor(y_all, dtype=torch.int) | ||||
|                     attr_dict = dict(y=y, pos=points[:, :3]) | ||||
|                     if self.mode == 'predict': | ||||
|                         attr_dict.update(normals=points[:, 3:6]) | ||||
|                     #################################### | ||||
|                     # This is where you define the keys | ||||
|                     attr_dict = dict(y=y, pos=points[:, :3 if not self.with_normals else 6]) | ||||
|                     #################################### | ||||
|                     if self.collate_per_element: | ||||
|                         data = Data(**attr_dict) | ||||
|                     else: | ||||
| @@ -161,14 +165,14 @@ class CustomShapeNet(InMemoryDataset): | ||||
|                         cloud_variations[int(os.path.split(element)[-1].split('_')[0])].append(data) | ||||
|             if not self.collate_per_element: | ||||
|                 if self.has_variations: | ||||
|                     for variation in cloud_variations.keys(): | ||||
|                     for _ in cloud_variations.keys(): | ||||
|                         datasets[data_folder].append(Data(**{key: torch.cat(data[key]) for key in data.keys()})) | ||||
|                 else: | ||||
|                     datasets[data_folder].append(Data(**{key: torch.cat(data[key]) for key in data.keys()})) | ||||
|  | ||||
|         if datasets[data_folder]: | ||||
|             os.makedirs(self.processed_dir, exist_ok=True) | ||||
|             torch.save(self.collate(datasets[data_folder]), self.processed_paths[idx]) | ||||
|             torch.save(self.collate(datasets[data_folder]), self.processed_paths[0]) | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return f'{self.__class__.__name__}({len(self)})' | ||||
| @@ -179,6 +183,7 @@ class ShapeNetPartSegDataset(Dataset): | ||||
|     Resample raw point cloud to fixed number of points. | ||||
|     Map raw label from range [1, N] to [0, N-1]. | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, root_dir, npoints=1024, mode='train', **kwargs): | ||||
|         super(ShapeNetPartSegDataset, self).__init__() | ||||
|         self.mode = mode | ||||
| @@ -191,22 +196,19 @@ class ShapeNetPartSegDataset(Dataset): | ||||
|  | ||||
|         # Resample to fixed number of points | ||||
|         try: | ||||
|             choice = np.random.choice(data.pos.shape[0], self.npoints, replace=True) | ||||
|             npoints = self.npoints if self.mode != 'predict' else data.pos.shape[0] | ||||
|             choice = np.random.choice(data.pos.shape[0], npoints, replace=False if self.mode == 'predict' else True) | ||||
|         except ValueError: | ||||
|             choice = [] | ||||
|  | ||||
|         points, labels = data.pos[choice, :], data.y[choice] | ||||
|         pos, labels = data.pos[choice, :], data.y[choice] | ||||
|  | ||||
|         labels -= 1 if self.num_classes() in labels else 0   # Map label from [1, C] to [0, C-1] | ||||
|  | ||||
|         sample = { | ||||
|             'points': points,  # torch.Tensor (n, 3) | ||||
|             'points': pos,  # torch.Tensor (n, 6) | ||||
|             'labels': labels  # torch.Tensor (n,) | ||||
|         } | ||||
|         if self.mode == 'predict': | ||||
|             normals = data.normals[choice] | ||||
|             sample.update(normals=normals) | ||||
|  | ||||
|         return sample | ||||
|  | ||||
|     def __len__(self): | ||||
|   | ||||
							
								
								
									
										18
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										18
									
								
								main.py
									
									
									
									
									
								
							| @@ -33,11 +33,12 @@ parser.add_argument('--npoints', type=int, default=1024, help='resample points n | ||||
| parser.add_argument('--model', type=str, default='', help='model path') | ||||
| parser.add_argument('--nepoch', type=int, default=250, help='number of epochs to train for') | ||||
| parser.add_argument('--outf', type=str, default='checkpoint', help='output folder') | ||||
| parser.add_argument('--labels_within', type=strtobool, default=False, help='defines the label location') | ||||
| parser.add_argument('--labels_within', type=strtobool, default=True, help='defines the label location') | ||||
| parser.add_argument('--batch_size', type=int, default=8, help='input batch size') | ||||
| parser.add_argument('--test_per_batches', type=int, default=1000, help='run a test batch per training batches number') | ||||
| parser.add_argument('--num_workers', type=int, default=4, help='number of data loading workers') | ||||
| parser.add_argument('--num_workers', type=int, default=0, help='number of data loading workers') | ||||
| parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers') | ||||
| parser.add_argument('--with_normals', type=strtobool, default=True, help='if training will include normals') | ||||
| parser.add_argument('--collate_per_segment', type=strtobool, default=True, help='whether to look at pointclouds or sub') | ||||
| parser.add_argument('--has_variations', type=strtobool, default=False, | ||||
|                     help='whether a single pointcloud has variations ' | ||||
| @@ -69,7 +70,7 @@ if __name__ == '__main__': | ||||
|                               ) | ||||
|  | ||||
|     TransTransform = GT.RandomTranslate(trans_max_distance) | ||||
|     train_transform = GT.Compose([GT.NormalizeScale(), RotTransform, TransTransform]) | ||||
|     train_transform = GT.Compose([GT.NormalizeScale(), ]) | ||||
|     test_transform = GT.Compose([GT.NormalizeScale(), ]) | ||||
|  | ||||
|     params = dict(root_dir=opt.dataset, | ||||
| @@ -78,7 +79,8 @@ if __name__ == '__main__': | ||||
|                   npoints=opt.npoints, | ||||
|                   labels_within=opt.labels_within, | ||||
|                   has_variations=opt.has_variations, | ||||
|                   headers=opt.headers | ||||
|                   headers=opt.headers, | ||||
|                   with_normals=opt.with_normals | ||||
|                   ) | ||||
|  | ||||
|     dataset = ShapeNetPartSegDataset(mode='train', **params) | ||||
| @@ -105,7 +107,7 @@ if __name__ == '__main__': | ||||
|     dtype = torch.float | ||||
|     print('cudnn.enabled: ', torch.backends.cudnn.enabled) | ||||
|  | ||||
|     net = PointNet2PartSegmentNet(num_classes) | ||||
|     net = PointNet2PartSegmentNet(num_classes, with_normals=opt.with_normals) | ||||
|  | ||||
|     if opt.model != '': | ||||
|         net.load_state_dict(torch.load(opt.model)) | ||||
| @@ -129,12 +131,12 @@ if __name__ == '__main__': | ||||
|  | ||||
|         net.train() | ||||
|         # ToDo: We need different dataloader here to train the network in multiple iterations, maybe move the loop down | ||||
|         # for dataloader in ... | ||||
|         for batch_idx, sample in enumerate(dataLoader): | ||||
|             # points: (batch_size, n, 3) | ||||
|             # points: (batch_size, n, 6) | ||||
|             # pos: (batch_size, n, 3) | ||||
|             # labels: (batch_size, n) | ||||
|             points, labels = sample['points'], sample['labels'] | ||||
|             points = points.transpose(1, 2).contiguous()  # (batch_size, 3, n) | ||||
|             points = points.transpose(1, 2).contiguous()  # (batch_size, 3/6, n) | ||||
|             points, labels = points.to(device, dtype), labels.to(device, torch.long) | ||||
|  | ||||
|             optimizer.zero_grad() | ||||
|   | ||||
| @@ -8,15 +8,15 @@ from torch_geometric.utils.num_nodes import maybe_num_nodes | ||||
| from torch_geometric.data.data import Data | ||||
| from torch_scatter import scatter_add, scatter_max | ||||
|  | ||||
| GLOBAL_POINT_FEATURES = 3 | ||||
|  | ||||
| class PointNet2SAModule(torch.nn.Module): | ||||
|     def __init__(self, sample_radio, radius, max_num_neighbors, mlp): | ||||
|     def __init__(self, sample_radio, radius, max_num_neighbors, mlp, features=3): | ||||
|         super(PointNet2SAModule, self).__init__() | ||||
|         self.sample_ratio = sample_radio | ||||
|         self.radius = radius | ||||
|         self.max_num_neighbors = max_num_neighbors | ||||
|         self.point_conv = PointConv(mlp) | ||||
|         self.features=features | ||||
|  | ||||
|     def forward(self, data): | ||||
|         x, pos, batch = data | ||||
| @@ -40,9 +40,10 @@ class PointNet2GlobalSAModule(torch.nn.Module): | ||||
|     One group with all input points, can be viewed as a simple PointNet module. | ||||
|     It also return the only one output point(set as origin point). | ||||
|     ''' | ||||
|     def __init__(self, mlp): | ||||
|     def __init__(self, mlp, features=3): | ||||
|         super(PointNet2GlobalSAModule, self).__init__() | ||||
|         self.mlp = mlp | ||||
|         self.features = features | ||||
|  | ||||
|     def forward(self, data): | ||||
|         x, pos, batch = data | ||||
| @@ -52,7 +53,7 @@ class PointNet2GlobalSAModule(torch.nn.Module): | ||||
|         x1 = scatter_max(x1, batch, dim=0)[0]  # (batch_size, C1) | ||||
|  | ||||
|         batch_size = x1.shape[0] | ||||
|         pos1 = x1.new_zeros((batch_size, GLOBAL_POINT_FEATURES))  # set the output point as origin | ||||
|         pos1 = x1.new_zeros((batch_size, self.features))  # set the output point as origin | ||||
|         batch1 = torch.arange(batch_size).to(batch.device, batch.dtype) | ||||
|  | ||||
|         return x1, pos1, batch1 | ||||
| @@ -158,44 +159,47 @@ class PointNet2PartSegmentNet(torch.nn.Module): | ||||
|         - https://github.com/charlesq34/pointnet2/blob/master/models/pointnet2_part_seg.py | ||||
|         - https://github.com/rusty1s/pytorch_geometric/blob/master/examples/pointnet++.py | ||||
|     ''' | ||||
|     def __init__(self, num_classes): | ||||
|     def __init__(self, num_classes, with_normals=False): | ||||
|         super(PointNet2PartSegmentNet, self).__init__() | ||||
|         self.num_classes = num_classes | ||||
|         self.features = 3 if not with_normals else 6 | ||||
|  | ||||
|         # SA1 | ||||
|         sa1_sample_ratio = 0.5 | ||||
|         sa1_radius = 0.2 | ||||
|         sa1_max_num_neighbours = 64 | ||||
|         sa1_mlp = make_mlp(GLOBAL_POINT_FEATURES, [64, 64, 128]) | ||||
|         self.sa1_module = PointNet2SAModule(sa1_sample_ratio, sa1_radius, sa1_max_num_neighbours, sa1_mlp) | ||||
|         sa1_mlp = make_mlp(self.features, [64, 64, 128]) | ||||
|         self.sa1_module = PointNet2SAModule(sa1_sample_ratio, sa1_radius, sa1_max_num_neighbours, sa1_mlp, | ||||
|                                             features=self.features) | ||||
|  | ||||
|         # SA2 | ||||
|         sa2_sample_ratio = 0.25 | ||||
|         sa2_radius = 0.4 | ||||
|         sa2_max_num_neighbours = 64 | ||||
|         sa2_mlp = make_mlp(128+GLOBAL_POINT_FEATURES, [128, 128, 256]) | ||||
|         self.sa2_module = PointNet2SAModule(sa2_sample_ratio, sa2_radius, sa2_max_num_neighbours, sa2_mlp) | ||||
|         sa2_mlp = make_mlp(128+self.features, [128, 128, 256]) | ||||
|         self.sa2_module = PointNet2SAModule(sa2_sample_ratio, sa2_radius, sa2_max_num_neighbours, sa2_mlp, | ||||
|                                             features=self.features) | ||||
|  | ||||
|         # SA3 | ||||
|         sa3_mlp = make_mlp(256+GLOBAL_POINT_FEATURES, [256, 512, 1024]) | ||||
|         self.sa3_module = PointNet2GlobalSAModule(sa3_mlp) | ||||
|         sa3_mlp = make_mlp(256+self.features, [256, 512, 1024]) | ||||
|         self.sa3_module = PointNet2GlobalSAModule(sa3_mlp, self.features) | ||||
|  | ||||
|         ## | ||||
|         knn_num = GLOBAL_POINT_FEATURES | ||||
|         knn_num = self.features | ||||
|  | ||||
|         # FP3, reverse of sa3 | ||||
|         fp3_knn_num = 1  # After global sa module, there is only one point in point cloud | ||||
|         fp3_mlp = make_mlp(1024+256+GLOBAL_POINT_FEATURES, [256, 256]) | ||||
|         fp3_mlp = make_mlp(1024+256+self.features, [256, 256]) | ||||
|         self.fp3_module = PointNet2FPModule(fp3_knn_num, fp3_mlp) | ||||
|  | ||||
|         # FP2, reverse of sa2 | ||||
|         fp2_knn_num = knn_num | ||||
|         fp2_mlp = make_mlp(256+128+GLOBAL_POINT_FEATURES, [256, 128]) | ||||
|         fp2_mlp = make_mlp(256+128+self.features, [256, 128]) | ||||
|         self.fp2_module = PointNet2FPModule(fp2_knn_num, fp2_mlp) | ||||
|  | ||||
|         # FP1, reverse of sa1 | ||||
|         fp1_knn_num = knn_num | ||||
|         fp1_mlp = make_mlp(128+GLOBAL_POINT_FEATURES, [128, 128, 128]) | ||||
|         fp1_mlp = make_mlp(128+self.features, [128, 128, 128]) | ||||
|         self.fp1_module = PointNet2FPModule(fp1_knn_num, fp1_mlp) | ||||
|  | ||||
|         self.fc1 = Lin(128, 128) | ||||
| @@ -252,11 +256,12 @@ class PointNet2PartSegmentNet(torch.nn.Module): | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     num_classes = 10 | ||||
|     net = PointNet2PartSegmentNet(num_classes) | ||||
|     num_features = 6 | ||||
|     net = PointNet2PartSegmentNet(num_classes, features=num_features) | ||||
|  | ||||
|     # | ||||
|     print('Test dense input ..') | ||||
|     data1 = torch.rand((2, GLOBAL_POINT_FEATURES, 1024))  # (batch_size, 3, num_points) | ||||
|     data1 = torch.rand((2, num_features, 1024))  # (batch_size, 3, num_points) | ||||
|     print('data1: ', data1.shape) | ||||
|  | ||||
|     out1 = net(data1) | ||||
| @@ -272,7 +277,7 @@ if __name__ == '__main__': | ||||
|         data_batch = Data() | ||||
|  | ||||
|         # data_batch.x = None | ||||
|         data_batch.pos = torch.cat([torch.rand(pos_num1, GLOBAL_POINT_FEATURES), torch.rand(pos_num2, GLOBAL_POINT_FEATURES)], dim=0) | ||||
|         data_batch.pos = torch.cat([torch.rand(pos_num1, num_features), torch.rand(pos_num2, num_features)], dim=0) | ||||
|         data_batch.batch = torch.cat([torch.zeros(pos_num1, dtype=torch.long), torch.ones(pos_num2, dtype=torch.long)]) | ||||
|  | ||||
|         return data_batch | ||||
|   | ||||
							
								
								
									
										200
									
								
								predict/clusters.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										200
									
								
								predict/clusters.txt
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,200 @@ | ||||
| 48 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 7.199833552042643747e-01 1.481056722005208437e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 5 6 | ||||
| 3.199843406677246316e-01 1.547723388671875089e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 1.414390055338541563e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.866499900817871316e-01 1.614390055338541741e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 2.533176740010579242e-01 1.614390055338541741e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.866499900817871316e-01 1.481056722005208437e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 2 6 | ||||
| 7.199833552042643747e-01 1.414390055338541563e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 6.533166885375976118e-01 1.481056722005208437e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 3.000000000000000000e+00 | ||||
| 4 6 | ||||
| 2.533176740010579242e-01 1.414390055338541563e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.199843406677246316e-01 1.347723388671874911e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 2.533176740010579242e-01 1.281056722005208259e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.866499900817871316e-01 1.281056722005208259e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 11 6 | ||||
| 3.199843406677246316e-01 1.947723388671875000e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 1.947723388671875000e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 1.814390055338541696e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 5.199833234151204353e-01 2.014390055338541874e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.866499900817871316e-01 2.014390055338541874e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 5.199833234151204353e-01 2.147723388671875178e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 2.533176740010579242e-01 2.014390055338541874e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.199843406677246316e-01 1.814390055338541696e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 2.533176740010579242e-01 1.881056722005208348e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 2.081056722005208304e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.866499900817871316e-01 1.881056722005208348e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 8 6 | ||||
| 3.199843406677246316e-01 2.214390055338541607e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.866499900817871316e-01 2.147723388671875178e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 2.081056722005208304e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 2.214390055338541607e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 5.199833234151204353e-01 2.014390055338541874e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 2.533176740010579242e-01 2.281056722005208481e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.866499900817871316e-01 2.014390055338541874e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 5.199833234151204353e-01 2.147723388671875178e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 4 6 | ||||
| 7.199833552042643747e-01 1.947723388671875000e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 6.533166885375976118e-01 2.014390055338541874e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 7.199833552042643747e-01 2.081056722005208304e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 6.533166885375976118e-01 2.147723388671875178e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.866510073343912723e-01 2.281056722005208481e+00 5.645600001017252456e-01 -4.267321706433224227e-04 9.999984323090402860e-01 -1.718510726318397703e-03 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 5.199833234151204353e-01 2.281056722005208481e+00 5.645600001017252456e-01 -4.267321706433224227e-04 9.999984323090402860e-01 -1.718510726318397703e-03 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 6.533166885375976118e-01 1.747723388671875044e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 5.331766605377197266e-02 2.214390055338541607e+00 6.312266667683918975e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 2.147723388671875178e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 2.014390055338541874e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 2 6 | ||||
| 5.331766605377197266e-02 2.081056722005208304e+00 6.312266667683918975e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02 | ||||
| 1.199843327204386384e-01 2.081056722005208304e+00 5.645600001017252456e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 1.614390055338541741e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 1.947723388671875000e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 5 6 | ||||
| 3.199843406677246316e-01 2.281056722005208481e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.199843406677246316e-01 2.147723388671875178e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.866499900817871316e-01 2.214390055338541607e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 2.281056722005208481e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 2.533176740010579242e-01 2.214390055338541607e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 5 6 | ||||
| 5.199833234151204353e-01 1.547723388671875089e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.866499900817871316e-01 1.681056722005208393e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 1.614390055338541741e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 1.481056722005208437e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 5.866500218709309600e-01 1.614390055338541741e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.000000000000000000e+00 | ||||
| 1 6 | ||||
| 5.331766605377197266e-02 1.881056722005208348e+00 6.312266667683918975e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 7.199833552042643747e-01 1.747723388671875044e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 5.866500218709309600e-01 1.747723388671875044e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 2 6 | ||||
| 5.866500218709309600e-01 1.614390055338541741e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 5.199833234151204353e-01 1.547723388671875089e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 8 6 | ||||
| 5.199833234151204353e-01 1.814390055338541696e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.866510073343912723e-01 1.881056722005208348e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 2.533176740010579242e-01 1.947723388671875000e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.199843406677246316e-01 1.881056722005208348e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 1.747723388671875044e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 5.866500218709309600e-01 1.881056722005208348e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 4.533166567484537834e-01 1.881056722005208348e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.866499900817871316e-01 1.814390055338541696e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.000000000000000000e+00 | ||||
| 2 6 | ||||
| 5.199833234151204353e-01 1.281056722005208259e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 5.866500218709309600e-01 1.347723388671874911e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 5.866500218709309600e-01 1.414390055338541563e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 3 6 | ||||
| 6.533166885375976118e-01 2.147723388671875178e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 6.533166885375976118e-01 2.281056722005208481e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 7.199833552042643747e-01 2.214390055338541607e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.000000000000000000e+00 | ||||
| 1 6 | ||||
| 5.199833234151204353e-01 1.281056722005208259e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 3.000000000000000000e+00 | ||||
| 6 6 | ||||
| 3.866499900817871316e-01 1.347723388671874911e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 2.533176740010579242e-01 1.347723388671874911e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.199843406677246316e-01 1.414390055338541563e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 2.533176740010579242e-01 1.481056722005208437e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 2.533176740010579242e-01 1.614390055338541741e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.199843406677246316e-01 1.547723388671875089e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 1.814390055338541696e+00 5.645600001017252456e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 1.414390055338541563e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 1.281056722005208259e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 2.147723388671875178e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 3.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 1.347723388671874911e+00 5.645600001017252456e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 7.199833552042643747e-01 1.614390055338541741e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 7.199833552042643747e-01 2.281056722005208481e+00 6.312266667683918975e-01 -4.267321706433224227e-04 9.999984323090402860e-01 -1.718510726318397703e-03 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 5.866500218709309600e-01 1.881056722005208348e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 1.547723388671875089e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.866510073343912723e-01 1.747723388671875044e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 2.533176740010579242e-01 2.081056722005208304e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 3.000000000000000000e+00 | ||||
| 1 6 | ||||
| 7.199833552042643747e-01 1.281056722005208259e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 7.199833552042643747e-01 1.881056722005208348e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 1.747723388671875044e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 6.533166885375976118e-01 2.014390055338541874e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 1.481056722005208437e+00 5.645600001017252456e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 1.199843327204386384e-01 1.414390055338541563e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 2.533176740010579242e-01 1.747723388671875044e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 5.866500218709309600e-01 2.281056722005208481e+00 6.312266667683918975e-01 -2.872351790370336957e-02 6.003545025065727403e-01 7.992180120838876523e-01 | ||||
| 1.000000000000000000e+00 | ||||
| 1 6 | ||||
| 3.866499900817871316e-01 2.281056722005208481e+00 5.645600001017252456e-01 -4.267321706433224227e-04 9.999984323090402860e-01 -1.718510726318397703e-03 | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										101251
									
								
								predict/pointclouds/1_pc.xyz
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101251
									
								
								predict/pointclouds/1_pc.xyz
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
		Reference in New Issue
	
	Block a user
	 Markus Friedrich
					Markus Friedrich