This commit is contained in:
Si11ium 2019-08-05 17:53:50 +02:00
parent 30525c954e
commit 54a5b48ddc
4 changed files with 31 additions and 161 deletions

View File

@ -21,23 +21,25 @@ def save_names(name_list, path):
class CustomShapeNet(InMemoryDataset):
categories = {key: val for val, key in enumerate(['Box', 'Cone', 'Cylinder', 'Sphere'])}
modes = {key: val for val, key in enumerate(['train', 'test', 'predict'])}
def __init__(self, root, collate_per_segment=True, train=True, transform=None, pre_filter=None, pre_transform=None,
headers=True, has_variations=False):
def __init__(self, root, collate_per_segment=True, mode='train', transform=None, pre_filter=None, pre_transform=None,
headers=True, has_variations=False, refresh=False):
assert mode in self.modes.keys(), f'"mode" must be one of {self.modes.keys()}'
assert not (collate_per_segment and has_variations), 'Either use each element or pointclouds - with variations'
self.has_headers = headers
self.has_variations = has_variations
self.collate_per_element = collate_per_segment
self.train = train
self.mode = mode
self.refresh = refresh
super(CustomShapeNet, self).__init__(root, transform, pre_transform, pre_filter)
path = self.processed_paths[0] if train else self.processed_paths[-1]
self.data, self.slices = torch.load(path)
self.data, self.slices = self._load_dataset()
print("Initialized")
@property
def raw_file_names(self):
# Maybe add more data like validation sets
return ['train', 'test']
return list(self.modes.keys())
@property
def processed_file_names(self):
@ -56,9 +58,18 @@ class CustomShapeNet(InMemoryDataset):
def _load_dataset(self):
data, slices = None, None
filepath = self.processed_paths[self.modes[self.mode]]
if self.refresh:
try:
os.remove(filepath)
print('Processed Location "Refreshed" (We deleted the Files)')
except FileNotFoundError:
print('You meant to refresh the allready processed dataset, but there were none...')
print('continue processing')
pass
while True:
try:
filepath = os.path.join(self.root, self.processed_dir, f'{"train" if self.train else "test"}.pt')
data, slices = torch.load(filepath)
print('Dataset Loaded')
break
@ -80,7 +91,7 @@ class CustomShapeNet(InMemoryDataset):
def process(self, delimiter=' '):
datasets = defaultdict(list)
idx, data_folder = (0, self.raw_file_names[0]) if self.train else (1, self.raw_file_names[1])
idx, data_folder = self.modes[self.mode], self.raw_file_names[self.modes[self.mode]]
path_to_clouds = os.path.join(self.raw_dir, data_folder)
if '.headers' in os.listdir(path_to_clouds):
@ -131,7 +142,7 @@ class CustomShapeNet(InMemoryDataset):
points = torch.tensor(src, dtype=None).squeeze()
if not len(points.shape) > 1:
continue
y_all = [y_raw] * points.shape[0]
y_all = ([y_raw] if self.mode != 'predict' else [-1]) * points.shape[0]
y = torch.as_tensor(y_all, dtype=torch.int)
if self.collate_per_element:
data = Data(y=y, pos=points[:, :3]) # , points=points, norm=points[:, 3:])
@ -167,12 +178,12 @@ class ShapeNetPartSegDataset(Dataset):
Resample raw point cloud to fixed number of points.
Map raw label from range [1, N] to [0, N-1].
"""
def __init__(self, root_dir, collate_per_segment=True, train=True, transform=None,
def __init__(self, root_dir, collate_per_segment=True, mode='train', transform=None, refresh=False,
has_variations=False, npoints=1024, headers=True):
super(ShapeNetPartSegDataset, self).__init__()
self.npoints = npoints
self.dataset = CustomShapeNet(root=root_dir, collate_per_segment=collate_per_segment,
train=train, transform=transform, headers=headers, has_variations=has_variations)
self.dataset = CustomShapeNet(root=root_dir, collate_per_segment=collate_per_segment, refresh=refresh,
mode=mode, transform=transform, headers=headers, has_variations=has_variations)
def __getitem__(self, index):
data = self.dataset[index]
@ -200,144 +211,3 @@ class ShapeNetPartSegDataset(Dataset):
def num_classes(self):
return self.dataset.num_classes
class PredictionShapeNet(InMemoryDataset):
def __init__(self, root, transform=None, pre_filter=None, pre_transform=None, headers=True, refresh=False):
self.has_headers = headers
self.refresh = refresh
super(PredictionShapeNet, self).__init__(root, transform, pre_transform, pre_filter)
path = self.processed_paths[0]
self.data, self.slices = self._load_dataset()
print("Initialized")
@property
def raw_file_names(self):
# Maybe add more data like validation sets
return ['predict']
@property
def processed_file_names(self):
return [f'{x}.pt' for x in self.raw_file_names]
def download(self):
dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))])
print(f'{dir_count} folders have been found....')
if dir_count:
return dir_count
raise IOError("No raw pointclouds have been found.")
@property
def num_classes(self):
return len(self.categories)
def _load_dataset(self):
data, slices = None, None
filepath = os.path.join(self.processed_dir, self.processed_file_names[0])
if self.refresh:
try:
os.remove(filepath)
print('Processed Location "Refreshed" (We deleted the Files)')
except FileNotFoundError:
print('You meant to refresh the allready processed dataset, but there were none...')
print('continue processing')
pass
while True:
try:
data, slices = torch.load(filepath)
print('Dataset Loaded')
break
except FileNotFoundError:
self.process()
continue
return data, slices
def process(self, delimiter=' '):
datasets, filenames = defaultdict(list), []
path_to_clouds = os.path.join(self.raw_dir, self.raw_file_names[0])
if '.headers' in os.listdir(path_to_clouds):
self.has_headers = True
elif 'no.headers' in os.listdir(path_to_clouds):
self.has_headers = False
else:
pass
for pointcloud in tqdm(os.scandir(path_to_clouds)):
if not os.path.isdir(pointcloud):
continue
full_cloud_pattern = '(^\d+?_|^)pc\.(xyz|dat)'
pattern = re.compile(full_cloud_pattern)
for file in os.scandir(pointcloud.path):
if not pattern.match(file.name):
continue
with open(file, 'r') as f:
if self.has_headers:
headers = f.__next__()
# Check if there are no useable nodes in this file, header says 0.
if not int(headers.rstrip().split(delimiter)[0]):
continue
# Iterate over all rows
src = [[float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0
for x in line.rstrip().split(delimiter)[None:None]] for line in f if line != '']
points = torch.tensor(src, dtype=None).squeeze()
if not len(points.shape) > 1:
continue
# pos = points[:, :3]
# norm = points[:, 3:]
y_fake_all = [-1] * points.shape[0]
y = torch.as_tensor(y_fake_all, dtype=torch.int)
# points = torch.as_tensor(points, dtype=torch.float)
# norm = torch.as_tensor(norm, dtype=torch.float)
data = Data(y=y, pos=points[:, :3], points=points, norm=points[:, 3:])
# , points=points, norm=points[:3], )
# ToDo: ANy filter to apply? Then do it here.
if self.pre_filter is not None and not self.pre_filter(data):
data = self.pre_filter(data)
raise NotImplementedError
# ToDo: ANy transformation to apply? Then do it here.
if self.pre_transform is not None:
data = self.pre_transform(data)
raise NotImplementedError
datasets[self.raw_file_names[0]].append(data)
filenames.append(file)
os.makedirs(self.processed_dir, exist_ok=True)
torch.save(self.collate(datasets[self.raw_file_names[0]]), self.processed_paths[0])
# save_names(filenames)
def __repr__(self):
return f'{self.__class__.__name__}({len(self)})'
class PredictNetPartSegDataset(Dataset):
"""
Resample raw point cloud to fixed number of points.
Map raw label from range [1, N] to [0, N-1].
"""
def __init__(self, root_dir, num_classes, transform=None, npoints=2048, headers=True, refresh=False):
super(PredictNetPartSegDataset, self).__init__()
self.npoints = npoints
self._num_classes = num_classes
self.dataset = PredictionShapeNet(root=root_dir, transform=transform, headers=headers, refresh=refresh)
def __getitem__(self, index):
data = self.dataset[index]
points, labels, _, norm = data.pos, data.y, data.points, data.norm
sample = {
'points': points, # torch.Tensor (n, 3)
'labels': labels, # torch.Tensor (n,)
'normals': norm # torch.Tensor (n,)
}
return sample
def __len__(self):
return len(self.dataset)
def num_classes(self):
return self._num_classes

View File

@ -73,12 +73,12 @@ if __name__ == '__main__':
test_transform = GT.Compose([GT.NormalizeScale(), ])
dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, collate_per_segment=opt.collate_per_segment,
train=True, transform=train_transform, npoints=opt.npoints,
mode='train', transform=train_transform, npoints=opt.npoints,
has_variations=opt.has_variations, headers=opt.headers)
dataLoader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
test_dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, collate_per_segment=opt.collate_per_segment,
train=False, transform=test_transform, npoints=opt.npoints,
mode='test', transform=test_transform, npoints=opt.npoints,
has_variations=opt.has_variations, headers=opt.headers)
test_dataLoader = DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)

View File

@ -2,7 +2,7 @@ import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
from dataset.shapenet import PredictNetPartSegDataset, ShapeNetPartSegDataset
from dataset.shapenet import ShapeNetPartSegDataset
from model.pointnet2_part_seg import PointNet2PartSegmentNet
import torch_geometric.transforms as GT
import torch
@ -13,7 +13,7 @@ import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='data', help='dataset path')
parser.add_argument('--npoints', type=int, default=2048, help='resample points number')
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_249.pth', help='model path')
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_246.pth', help='model path')
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
opt = parser.parse_args()
print(opt)
@ -24,9 +24,9 @@ if __name__ == '__main__':
print('Construct dataset ..')
test_transform = GT.Compose([GT.NormalizeScale(),])
test_dataset = PredictNetPartSegDataset(
test_dataset = ShapeNetPartSegDataset(
mode='predict',
root_dir=opt.dataset,
num_classes=4,
transform=None,
npoints=opt.npoints,
refresh=True

View File

@ -28,10 +28,10 @@ if __name__ == '__main__':
print('Construct dataset ..')
test_transform = GT.Compose([GT.NormalizeScale(),])
test_dataset = PredictNetPartSegDataset(
test_dataset = ShapeNetPartSegDataset(
root_dir=opt.dataset,
collate_per_segment=False,
train=False,
mode='predict',
transform=test_transform,
npoints=opt.npoints
)