multi_agent observation when n_agent more then 1
This commit is contained in:
parent
62c141aa1c
commit
cf2378a734
@ -1,6 +1,6 @@
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Iterable, NamedTuple
|
||||
from typing import List, Union, Iterable
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
@ -9,115 +9,7 @@ from gym import spaces
|
||||
import yaml
|
||||
|
||||
from environments import helpers as h
|
||||
|
||||
|
||||
class MovementProperties(NamedTuple):
|
||||
allow_square_movement: bool = True
|
||||
allow_diagonal_movement: bool = False
|
||||
allow_no_op: bool = False
|
||||
|
||||
|
||||
class Entity():
|
||||
|
||||
@property
|
||||
def pos(self):
|
||||
return self._pos
|
||||
|
||||
def __init__(self, pos):
|
||||
self._pos = pos
|
||||
|
||||
|
||||
class AgentState:
|
||||
|
||||
def __init__(self, i: int, action: int):
|
||||
self.i = i
|
||||
self.action = action
|
||||
|
||||
self.collision_vector = None
|
||||
self.action_valid = None
|
||||
self.pos = None
|
||||
self.info = {}
|
||||
|
||||
@property
|
||||
def collisions(self):
|
||||
return np.argwhere(self.collision_vector != 0).flatten()
|
||||
|
||||
def update(self, **kwargs): # is this hacky?? o.0
|
||||
for key, value in kwargs.items():
|
||||
if hasattr(self, key):
|
||||
self.__setattr__(key, value)
|
||||
else:
|
||||
raise AttributeError(f'"{key}" cannot be updated, this attr is not a part of {self.__class__.__name__}')
|
||||
|
||||
|
||||
class Register:
|
||||
|
||||
@property
|
||||
def n(self):
|
||||
return len(self)
|
||||
|
||||
def __init__(self):
|
||||
self._register = dict()
|
||||
|
||||
def __len__(self):
|
||||
return len(self._register)
|
||||
|
||||
def __add__(self, other: Union[str, List[str]]):
|
||||
other = other if isinstance(other, list) else [other]
|
||||
assert all([isinstance(x, str) for x in other]), f'All item names have to be of type {str}.'
|
||||
self._register.update({key+len(self._register): value for key, value in enumerate(other)})
|
||||
return self
|
||||
|
||||
def register_additional_items(self, other: Union[str, List[str]]):
|
||||
self_with_additional_items = self + other
|
||||
return self_with_additional_items
|
||||
|
||||
def keys(self):
|
||||
return self._register.keys()
|
||||
|
||||
def items(self):
|
||||
return self._register.items()
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self._register[item]
|
||||
|
||||
def by_name(self, item):
|
||||
return list(self._register.keys())[list(self._register.values()).index(item)]
|
||||
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}({self._register})'
|
||||
|
||||
|
||||
class Actions(Register):
|
||||
|
||||
@property
|
||||
def movement_actions(self):
|
||||
return self._movement_actions
|
||||
|
||||
def __init__(self, movement_properties: MovementProperties):
|
||||
self.allow_no_op = movement_properties.allow_no_op
|
||||
self.allow_diagonal_movement = movement_properties.allow_diagonal_movement
|
||||
self.allow_square_movement = movement_properties.allow_square_movement
|
||||
# FIXME: There is a bug in helpers because there actions are ints. and the order matters.
|
||||
assert not(self.allow_square_movement is False and self.allow_diagonal_movement is True), \
|
||||
"There is a bug in helpers!!!"
|
||||
super(Actions, self).__init__()
|
||||
|
||||
if self.allow_square_movement:
|
||||
self + ['north', 'east', 'south', 'west']
|
||||
if self.allow_diagonal_movement:
|
||||
self + ['north-east', 'south-east', 'south-west', 'north-west']
|
||||
self._movement_actions = self._register.copy()
|
||||
if self.allow_no_op:
|
||||
self + 'no-op'
|
||||
|
||||
|
||||
class StateSlice(Register):
|
||||
|
||||
def __init__(self, n_agents: int):
|
||||
super(StateSlice, self).__init__()
|
||||
offset = 1
|
||||
self.register_additional_items(['level', *[f'agent#{i}' for i in range(offset, n_agents+offset)]])
|
||||
from environments.utility_classes import Actions, StateSlice, AgentState, MovementProperties
|
||||
|
||||
|
||||
# noinspection PyAttributeOutsideInit
|
||||
@ -148,9 +40,11 @@ class BaseFactory(gym.Env):
|
||||
def movement_actions(self):
|
||||
return self._actions.movement_actions
|
||||
|
||||
def __init__(self, level_name='simple', n_agents=1, max_steps=int(5e2), pomdp_radius: Union[None, int] = None,
|
||||
def __init__(self, level_name='simple', n_agents=1, max_steps=int(5e2), pomdp_radius: Union[None, int] = 0,
|
||||
movement_properties: MovementProperties = MovementProperties(),
|
||||
combin_agent_slices_in_obs: bool = False,
|
||||
omit_agent_slice_in_obs=False, **kwargs):
|
||||
assert combin_agent_slices_in_obs != omit_agent_slice_in_obs, 'Both options are exclusive'
|
||||
|
||||
self.movement_properties = movement_properties
|
||||
self.level_name = level_name
|
||||
@ -158,6 +52,7 @@ class BaseFactory(gym.Env):
|
||||
self.n_agents = n_agents
|
||||
self.max_steps = max_steps
|
||||
self.pomdp_radius = pomdp_radius
|
||||
self.combin_agent_slices_in_obs = combin_agent_slices_in_obs
|
||||
self.omit_agent_slice_in_obs = omit_agent_slice_in_obs
|
||||
|
||||
self.done_at_collision = False
|
||||
@ -185,7 +80,7 @@ class BaseFactory(gym.Env):
|
||||
raise NotImplementedError('Please register additional actions ')
|
||||
|
||||
def reset(self) -> (np.ndarray, int, bool, dict):
|
||||
self.steps = 0
|
||||
self._steps = 0
|
||||
self._agent_states = []
|
||||
# Agent placement ...
|
||||
agents = np.zeros((self.n_agents, *self._level.shape), dtype=np.int8)
|
||||
@ -202,17 +97,25 @@ class BaseFactory(gym.Env):
|
||||
# Returns State
|
||||
return None
|
||||
|
||||
def _return_state(self):
|
||||
def _get_observations(self) -> np.ndarray:
|
||||
if self.n_agents == 1:
|
||||
obs = self._build_per_agent_obs(0)
|
||||
elif self.n_agents >= 2:
|
||||
obs = np.stack([self._build_per_agent_obs(agent_i) for agent_i in range(self.n_agents)])
|
||||
return obs
|
||||
|
||||
def _build_per_agent_obs(self, agent_i: int) -> np.ndarray:
|
||||
if self.pomdp_radius:
|
||||
pos = self._agent_states[0].pos
|
||||
# pos = [agent_state.pos for agent_state in self.agent_states]
|
||||
# obs = [] ... list comprehension... pos per agent
|
||||
x0, x1 = max(0, pos[0] - self.pomdp_radius), pos[0] + self.pomdp_radius + 1
|
||||
y0, y1 = max(0, pos[1] - self.pomdp_radius), pos[1] + self.pomdp_radius + 1
|
||||
global_pos = self._agent_states[agent_i].pos
|
||||
x0, x1 = max(0, global_pos[0] - self.pomdp_radius), global_pos[0] + self.pomdp_radius + 1
|
||||
y0, y1 = max(0, global_pos[1] - self.pomdp_radius), global_pos[1] + self.pomdp_radius + 1
|
||||
obs = self._state[:, x0:x1, y0:y1]
|
||||
if obs.shape[1] != self.pomdp_radius * 2 + 1 or obs.shape[2] != self.pomdp_radius * 2 + 1:
|
||||
obs_padded = np.full((obs.shape[0], self.pomdp_radius * 2 + 1, self.pomdp_radius * 2 + 1), 1)
|
||||
a_pos = np.argwhere(obs[h.AGENT_START_IDX] == h.IS_OCCUPIED_CELL)[0]
|
||||
try:
|
||||
a_pos = np.argwhere(obs[h.AGENT_START_IDX + agent_i] == h.IS_OCCUPIED_CELL)[0]
|
||||
except IndexError:
|
||||
print('NO')
|
||||
obs_padded[:,
|
||||
abs(a_pos[0]-self.pomdp_radius):abs(a_pos[0]-self.pomdp_radius)+obs.shape[1],
|
||||
abs(a_pos[1]-self.pomdp_radius):abs(a_pos[1]-self.pomdp_radius)+obs.shape[2]] = obs
|
||||
@ -223,7 +126,13 @@ class BaseFactory(gym.Env):
|
||||
obs_new = obs[[key for key, val in self._state_slices.items() if 'agent' not in val]]
|
||||
return obs_new
|
||||
else:
|
||||
return obs
|
||||
if self.combin_agent_slices_in_obs:
|
||||
agent_obs = np.sum(obs[[key for key, val in self._state_slices.items() if 'agent' in val]],
|
||||
axis=0, keepdims=True)
|
||||
obs = np.concatenate((obs[:h.AGENT_START_IDX], agent_obs, obs[h.AGENT_START_IDX+self.n_agents:]))
|
||||
return obs
|
||||
else:
|
||||
return obs
|
||||
|
||||
def do_additional_actions(self, agent_i: int, action: int) -> ((int, int), bool):
|
||||
raise NotImplementedError
|
||||
@ -231,16 +140,16 @@ class BaseFactory(gym.Env):
|
||||
def step(self, actions):
|
||||
actions = [actions] if isinstance(actions, int) or np.isscalar(actions) else actions
|
||||
assert isinstance(actions, Iterable), f'"actions" has to be in [{int, list}]'
|
||||
self.steps += 1
|
||||
self._steps += 1
|
||||
done = False
|
||||
|
||||
# Move this in a seperate function?
|
||||
agent_states = list()
|
||||
for agent_i, action in enumerate(actions):
|
||||
agent_i_state = AgentState(agent_i, action)
|
||||
if self._is_moving_action(action):
|
||||
if self._actions.is_moving_action(action):
|
||||
pos, valid = self.move_or_colide(agent_i, action)
|
||||
elif self._is_no_op(action):
|
||||
elif self._actions.is_no_op(action):
|
||||
pos, valid = self.agent_i_position(agent_i), True
|
||||
else:
|
||||
pos, valid = self.do_additional_actions(agent_i, action)
|
||||
@ -256,24 +165,18 @@ class BaseFactory(gym.Env):
|
||||
self._agent_states = agent_states
|
||||
reward, info = self.calculate_reward(agent_states)
|
||||
|
||||
if self.steps >= self.max_steps:
|
||||
if self._steps >= self.max_steps:
|
||||
done = True
|
||||
|
||||
info.update(step_reward=reward, step=self.steps)
|
||||
info.update(step_reward=reward, step=self._steps)
|
||||
|
||||
return None, reward, done, info
|
||||
|
||||
def _is_moving_action(self, action):
|
||||
return action in self._actions.movement_actions
|
||||
|
||||
def _is_no_op(self, action):
|
||||
return self._actions[action] == 'no-op'
|
||||
|
||||
def check_all_collisions(self, agent_states: List[AgentState], collisions: int) -> np.ndarray:
|
||||
collision_vecs = np.zeros((len(agent_states), collisions)) # n_agents x n_slices
|
||||
for agent_state in agent_states:
|
||||
# Register only collisions of moving agents
|
||||
if self._is_moving_action(agent_state.action):
|
||||
if self._actions.is_moving_action(agent_state.action):
|
||||
collision_vecs[agent_state.i] = self.check_collisions(agent_state)
|
||||
return collision_vecs
|
||||
|
||||
|
@ -1,16 +1,14 @@
|
||||
from collections import OrderedDict
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import List, Union, NamedTuple
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
|
||||
from environments.factory.base_factory import BaseFactory, AgentState, MovementProperties
|
||||
from environments.factory.base_factory import BaseFactory
|
||||
from environments import helpers as h
|
||||
|
||||
from environments.logging.monitor import MonitorCallback
|
||||
from environments.factory.renderer import Renderer, Entity
|
||||
from environments.utility_classes import AgentState, MovementProperties
|
||||
|
||||
DIRT_INDEX = -1
|
||||
CLEAN_UP_ACTION = 'clean_up'
|
||||
@ -25,13 +23,16 @@ class DirtProperties(NamedTuple):
|
||||
max_global_amount: int = 20 # Max dirt amount in the whole environment.
|
||||
|
||||
|
||||
# noinspection PyAttributeOutsideInit
|
||||
class SimpleFactory(BaseFactory):
|
||||
|
||||
@property
|
||||
def additional_actions(self) -> Union[str, List[str]]:
|
||||
return CLEAN_UP_ACTION
|
||||
|
||||
def _is_clean_up_action(self, action):
|
||||
def _is_clean_up_action(self, action: Union[str, int]):
|
||||
if isinstance(action, str):
|
||||
action = self._actions.by_name(action)
|
||||
return self._actions[action] == CLEAN_UP_ACTION
|
||||
|
||||
def __init__(self, *args, dirt_properties: DirtProperties, verbose=False, **kwargs):
|
||||
@ -47,9 +48,9 @@ class SimpleFactory(BaseFactory):
|
||||
height, width = self._state.shape[1:]
|
||||
self._renderer = Renderer(width, height, view_radius=self.pomdp_radius)
|
||||
|
||||
dirt = [Entity('dirt', [x, y], min(0.15 + self._state[DIRT_INDEX, x, y], 1.5), 'scale')
|
||||
for x, y in np.argwhere(self._state[DIRT_INDEX] > h.IS_FREE_CELL)]
|
||||
walls = [Entity('wall', pos) for pos in np.argwhere(self._state[h.LEVEL_IDX] > h.IS_FREE_CELL)]
|
||||
dirt = [Entity('dirt', [x, y], min(0.15 + self._state[DIRT_INDEX, x, y], 1.5), 'scale')
|
||||
for x, y in np.argwhere(self._state[DIRT_INDEX] > h.IS_FREE_CELL)]
|
||||
walls = [Entity('wall', pos) for pos in np.argwhere(self._state[h.LEVEL_IDX] > h.IS_FREE_CELL)]
|
||||
|
||||
def asset_str(agent):
|
||||
if any([x is None for x in [self._state_slices[j] for j in agent.collisions]]):
|
||||
@ -93,17 +94,18 @@ class SimpleFactory(BaseFactory):
|
||||
return pos, cleanup_was_sucessfull
|
||||
|
||||
def step(self, actions):
|
||||
_, r, done, info = super(SimpleFactory, self).step(actions)
|
||||
_, reward, done, info = super(SimpleFactory, self).step(actions)
|
||||
if not self._next_dirt_spawn:
|
||||
self.spawn_dirt()
|
||||
self._next_dirt_spawn = self.dirt_properties.spawn_frequency
|
||||
else:
|
||||
self._next_dirt_spawn -= 1
|
||||
obs = self._return_state()
|
||||
return obs, r, done, info
|
||||
|
||||
obs = self._get_observations()
|
||||
return obs, reward, done, info
|
||||
|
||||
def do_additional_actions(self, agent_i: int, action: int) -> ((int, int), bool):
|
||||
if action != self._is_moving_action(action):
|
||||
if action != self._actions.is_moving_action(action):
|
||||
if self._is_clean_up_action(action):
|
||||
agent_i_pos = self.agent_i_position(agent_i)
|
||||
_, valid = self.clean_up(agent_i_pos)
|
||||
@ -119,7 +121,7 @@ class SimpleFactory(BaseFactory):
|
||||
self._state = np.concatenate((self._state, dirt_slice)) # dirt is now the last slice
|
||||
self.spawn_dirt()
|
||||
self._next_dirt_spawn = self.dirt_properties.spawn_frequency
|
||||
obs = self._return_state()
|
||||
obs = self._get_observations()
|
||||
return obs
|
||||
|
||||
def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
|
||||
@ -141,7 +143,7 @@ class SimpleFactory(BaseFactory):
|
||||
if entity != self._state_slices.by_name("dirt")]
|
||||
|
||||
if list_of_collisions:
|
||||
self.print(f't = {self.steps}\tAgent {agent_state.i} has collisions with '
|
||||
self.print(f't = {self._steps}\tAgent {agent_state.i} has collisions with '
|
||||
f'{list_of_collisions}')
|
||||
|
||||
if self._is_clean_up_action(agent_state.action):
|
||||
@ -155,7 +157,7 @@ class SimpleFactory(BaseFactory):
|
||||
f'at {agent_state.pos}, but was unsucsessfull.')
|
||||
info_dict.update(failed_cleanup_attempt=1)
|
||||
|
||||
elif self._is_moving_action(agent_state.action):
|
||||
elif self._actions.is_moving_action(agent_state.action):
|
||||
if agent_state.action_valid:
|
||||
# info_dict.update(movement=1)
|
||||
reward -= 0.00
|
||||
@ -185,10 +187,11 @@ class SimpleFactory(BaseFactory):
|
||||
|
||||
if __name__ == '__main__':
|
||||
render = True
|
||||
import yaml
|
||||
with Path(r'C:\Users\steff\projects\f_iks\debug_out\yaml.txt').open('r') as f:
|
||||
env_kwargs = yaml.load(f)
|
||||
factory = SimpleFactory(**env_kwargs)
|
||||
|
||||
move_props = MovementProperties(allow_diagonal_movement=True, allow_square_movement=True)
|
||||
dirt_props = DirtProperties()
|
||||
factory = SimpleFactory(movement_properties=move_props, dirt_properties=dirt_props, n_agents=2,
|
||||
combin_agent_slices_in_obs=True, omit_agent_slice_in_obs=False)
|
||||
|
||||
# dirt_props = DirtProperties()
|
||||
# move_props = MovementProperties(allow_diagonal_movement=False, allow_no_op=False)
|
||||
@ -200,10 +203,12 @@ if __name__ == '__main__':
|
||||
for epoch in range(100):
|
||||
random_actions = [[random.randint(0, n_actions) for _ in range(factory.n_agents)] for _ in range(200)]
|
||||
env_state = factory.reset()
|
||||
r = 0
|
||||
for agent_i_action in random_actions:
|
||||
env_state, reward, done_bool, info_obj = factory.step(agent_i_action)
|
||||
env_state, step_r, done_bool, info_obj = factory.step(agent_i_action)
|
||||
r += step_r
|
||||
if render:
|
||||
factory.render()
|
||||
if done_bool:
|
||||
break
|
||||
print(f'Factory run {epoch} done, reward is:\n {reward}')
|
||||
print(f'Factory run {epoch} done, reward is:\n {r}')
|
||||
|
@ -32,13 +32,15 @@ def prepare_plot(filepath, results_df, ext='png', hue='Measurement', style=None)
|
||||
hue_order = sorted(list(df[hue].unique()))
|
||||
try:
|
||||
sns.set(rc={'text.usetex': True}, style='whitegrid')
|
||||
_ = sns.lineplot(data=df, x='Episode', y='Score', ci=95, palette=PALETTE,
|
||||
hue_order=hue_order, hue=hue, style=style)
|
||||
lineplot = sns.lineplot(data=df, x='Episode', y='Score', ci=95, palette=PALETTE,
|
||||
hue_order=hue_order, hue=hue, style=style)
|
||||
lineplot.set_title(f'{sorted(list(df["Measurement"].unique()))}')
|
||||
plot(filepath, ext=ext) # plot raises errors not lineplot!
|
||||
except (FileNotFoundError, RuntimeError):
|
||||
print('Struggling to plot Figure using LaTeX - going back to normal.')
|
||||
plt.close('all')
|
||||
sns.set(rc={'text.usetex': False}, style='whitegrid')
|
||||
sns.lineplot(data=df, x='Episode', y='Score', hue=hue, style=style,
|
||||
ci=95, palette=PALETTE, hue_order=hue_order)
|
||||
lineplot = sns.lineplot(data=df, x='Episode', y='Score', hue=hue, style=style,
|
||||
ci=95, palette=PALETTE, hue_order=hue_order)
|
||||
lineplot.set_title(f'{sorted(list(df["Measurement"].unique()))}')
|
||||
plot(filepath, ext=ext)
|
||||
|
127
environments/utility_classes.py
Normal file
127
environments/utility_classes.py
Normal file
@ -0,0 +1,127 @@
|
||||
from typing import Union, List, NamedTuple
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MovementProperties(NamedTuple):
|
||||
allow_square_movement: bool = True
|
||||
allow_diagonal_movement: bool = False
|
||||
allow_no_op: bool = False
|
||||
|
||||
# Preperations for Entities (not used yet)
|
||||
class Entity:
|
||||
|
||||
@property
|
||||
def pos(self):
|
||||
return self._pos
|
||||
|
||||
@property
|
||||
def identifier(self):
|
||||
return self._identifier
|
||||
|
||||
def __init__(self, identifier, pos):
|
||||
self._pos = pos
|
||||
self._identifier = identifier
|
||||
|
||||
|
||||
class AgentState:
|
||||
|
||||
def __init__(self, i: int, action: int):
|
||||
self.i = i
|
||||
self.action = action
|
||||
|
||||
self.collision_vector = None
|
||||
self.action_valid = None
|
||||
self.pos = None
|
||||
self.info = {}
|
||||
|
||||
@property
|
||||
def collisions(self):
|
||||
return np.argwhere(self.collision_vector != 0).flatten()
|
||||
|
||||
def update(self, **kwargs): # is this hacky?? o.0
|
||||
for key, value in kwargs.items():
|
||||
if hasattr(self, key):
|
||||
self.__setattr__(key, value)
|
||||
else:
|
||||
raise AttributeError(f'"{key}" cannot be updated, this attr is not a part of {self.__class__.__name__}')
|
||||
|
||||
|
||||
class Register:
|
||||
|
||||
@property
|
||||
def n(self):
|
||||
return len(self)
|
||||
|
||||
def __init__(self):
|
||||
self._register = dict()
|
||||
|
||||
def __len__(self):
|
||||
return len(self._register)
|
||||
|
||||
def __add__(self, other: Union[str, List[str]]):
|
||||
other = other if isinstance(other, list) else [other]
|
||||
assert all([isinstance(x, str) for x in other]), f'All item names have to be of type {str}.'
|
||||
self._register.update({key+len(self._register): value for key, value in enumerate(other)})
|
||||
return self
|
||||
|
||||
def register_additional_items(self, other: Union[str, List[str]]):
|
||||
self_with_additional_items = self + other
|
||||
return self_with_additional_items
|
||||
|
||||
def keys(self):
|
||||
return self._register.keys()
|
||||
|
||||
def items(self):
|
||||
return self._register.items()
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self._register[item]
|
||||
|
||||
def by_name(self, item):
|
||||
return list(self._register.keys())[list(self._register.values()).index(item)]
|
||||
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}({self._register})'
|
||||
|
||||
|
||||
class Actions(Register):
|
||||
|
||||
@property
|
||||
def movement_actions(self):
|
||||
return self._movement_actions
|
||||
|
||||
def __init__(self, movement_properties: MovementProperties):
|
||||
self.allow_no_op = movement_properties.allow_no_op
|
||||
self.allow_diagonal_movement = movement_properties.allow_diagonal_movement
|
||||
self.allow_square_movement = movement_properties.allow_square_movement
|
||||
# FIXME: There is a bug in helpers because there actions are ints. and the order matters.
|
||||
# assert not(self.allow_square_movement is False and self.allow_diagonal_movement is True), \
|
||||
# "There is a bug in helpers!!!"
|
||||
super(Actions, self).__init__()
|
||||
|
||||
if self.allow_square_movement:
|
||||
self + ['north', 'east', 'south', 'west']
|
||||
if self.allow_diagonal_movement:
|
||||
self + ['north_east', 'south_east', 'south_west', 'north_west']
|
||||
self._movement_actions = self._register.copy()
|
||||
if self.allow_no_op:
|
||||
self + 'no-op'
|
||||
|
||||
def is_moving_action(self, action: Union[str, int]):
|
||||
if isinstance(action, str):
|
||||
return action in self.movement_actions.values()
|
||||
else:
|
||||
return self[action] in self.movement_actions.values()
|
||||
|
||||
def is_no_op(self, action: Union[str, int]):
|
||||
if isinstance(action, str):
|
||||
action = self.by_name(action)
|
||||
return self[action] == 'no-op'
|
||||
|
||||
|
||||
class StateSlice(Register):
|
||||
|
||||
def __init__(self, n_agents: int):
|
||||
super(StateSlice, self).__init__()
|
||||
offset = 1
|
||||
self.register_additional_items(['level', *[f'agent#{i}' for i in range(offset, n_agents+offset)]])
|
4
main.py
4
main.py
@ -94,7 +94,7 @@ if __name__ == '__main__':
|
||||
|
||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||
max_local_amount=5, spawn_frequency=3)
|
||||
move_props = MovementProperties(allow_diagonal_movement=False,
|
||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False)
|
||||
time_stamp = int(time.time())
|
||||
@ -123,7 +123,7 @@ if __name__ == '__main__':
|
||||
[MonitorCallback(filepath=out_path / f'monitor_{identifier}.pick', plotting=False)]
|
||||
)
|
||||
|
||||
model.learn(total_timesteps=int(5e5), callback=callbacks)
|
||||
model.learn(total_timesteps=int(1e5), callback=callbacks)
|
||||
|
||||
save_path = out_path / f'model_{identifier}.zip'
|
||||
save_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
75
main_test.py
Normal file
75
main_test.py
Normal file
@ -0,0 +1,75 @@
|
||||
# foreign imports
|
||||
import warnings
|
||||
|
||||
from pathlib import Path
|
||||
import yaml
|
||||
from natsort import natsorted
|
||||
|
||||
from stable_baselines3.common.callbacks import CallbackList
|
||||
from stable_baselines3 import PPO, DQN, A2C
|
||||
|
||||
# our imports
|
||||
from environments.factory.simple_factory import SimpleFactory
|
||||
from environments.logging.monitor import MonitorCallback
|
||||
from algorithms.reg_dqn import RegDQN
|
||||
from main import compare_runs, combine_runs
|
||||
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
model_mapping = dict(A2C=A2C, PPO=PPO, DQN=DQN, RegDQN=RegDQN)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# get n policies pi_1, ..., pi_n trained in single agent setting
|
||||
# rewards = []
|
||||
# repeat for x eval runs
|
||||
# total reward = rollout game for y steps with n policies in multi-agent setting
|
||||
# rewards += [total reward]
|
||||
# boxplot total rewards
|
||||
|
||||
run_id = '1623078961'
|
||||
model_name = 'PPO'
|
||||
|
||||
# -----------------------
|
||||
out_path = Path(__file__).parent / 'debug_out'
|
||||
|
||||
# from sb3_contrib import QRDQN
|
||||
model_path = out_path / f'{model_name}_{run_id}'
|
||||
model_files = list(natsorted(model_path.rglob('model_*.zip')))
|
||||
this_model = model_files[0]
|
||||
render = True
|
||||
|
||||
model = model_mapping[model_name].load(this_model)
|
||||
|
||||
for seed in range(3):
|
||||
with (model_path / f'env_{model_path.name}.yaml').open('r') as f:
|
||||
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
|
||||
env_kwargs.update(n_agents=2)
|
||||
env = SimpleFactory(**env_kwargs)
|
||||
|
||||
exp_out_path = model_path / 'exp'
|
||||
callbacks = CallbackList(
|
||||
[MonitorCallback(filepath=exp_out_path / f'future_exp_name', plotting=True)]
|
||||
)
|
||||
|
||||
n_actions = env.action_space.n
|
||||
|
||||
for epoch in range(100):
|
||||
observations = env.reset()
|
||||
if render:
|
||||
env.render()
|
||||
done_bool = False
|
||||
r = 0
|
||||
while not done_bool:
|
||||
actions = [model.predict(obs, deterministic=False)[0] for obs in observations]
|
||||
|
||||
obs, r, done_bool, info_obj = env.step(actions)
|
||||
if render:
|
||||
env.render()
|
||||
if done_bool:
|
||||
break
|
||||
print(f'Factory run {epoch} done, reward is:\n {r}')
|
||||
|
||||
if out_path:
|
||||
combine_runs(out_path.parent)
|
Loading…
x
Reference in New Issue
Block a user