add VDN fix
This commit is contained in:
parent
543c2987e0
commit
c5d677e9ba
@ -39,9 +39,9 @@ class BaseBuffer:
|
||||
return Experience(observations, next_observations, actions, rewards, dones)
|
||||
|
||||
|
||||
class BaseDQN(nn.Module):
|
||||
class BaseDDQN(nn.Module):
|
||||
def __init__(self):
|
||||
super(BaseDQN, self).__init__()
|
||||
super(BaseDDQN, self).__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Flatten(),
|
||||
nn.Linear(3*5*5, 64),
|
||||
@ -64,6 +64,27 @@ class BaseDQN(nn.Module):
|
||||
return values + (advantages - advantages.mean())
|
||||
|
||||
|
||||
class BaseDQN(nn.Module):
|
||||
def __init__(self):
|
||||
super(BaseDQN, self).__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Flatten(),
|
||||
nn.Linear(3*5*5, 64),
|
||||
nn.ELU(),
|
||||
nn.Linear(64, 64),
|
||||
nn.ELU(),
|
||||
nn.Linear(64, 9)
|
||||
)
|
||||
|
||||
def act(self, x) -> np.ndarray:
|
||||
with torch.no_grad():
|
||||
action = self.forward(x).max(-1)[1].numpy()
|
||||
return action
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
def soft_update(local_model, target_model, tau):
|
||||
# taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb
|
||||
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
|
||||
@ -154,10 +175,11 @@ class BaseQlearner:
|
||||
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t'
|
||||
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self._n_updates}')
|
||||
|
||||
def _training_routine(self, obs, next_obs, action, reward):
|
||||
def _training_routine(self, obs, next_obs, action):
|
||||
current_q_values = self.q_net(obs)
|
||||
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
|
||||
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
||||
#print(current_q_values.shape, next_q_values_raw.shape)
|
||||
return current_q_values, next_q_values_raw
|
||||
|
||||
def _backprop_loss(self, loss):
|
||||
@ -174,22 +196,21 @@ class BaseQlearner:
|
||||
for _ in range(self.n_grad_steps):
|
||||
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
|
||||
if self.n_agents <= 1:
|
||||
pred_q, target_q_raw = self._training_routine(experience.observation,
|
||||
experience.next_observation,
|
||||
experience.action,
|
||||
experience.reward)
|
||||
experience.next_observation,
|
||||
experience.action)
|
||||
|
||||
else:
|
||||
pred_q, target_q_raw, reward = [torch.zeros((self.batch_size, 1))]*3
|
||||
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
|
||||
for agent_i in range(self.n_agents):
|
||||
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
|
||||
experience.next_observation[:, agent_i],
|
||||
experience.action[:, agent_i].unsqueeze(-1),
|
||||
experience.reward)
|
||||
experience.next_observation[:, agent_i],
|
||||
experience.action[:, agent_i].unsqueeze(-1))
|
||||
pred_q += q_values
|
||||
target_q_raw += next_q_values_raw
|
||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||
#print(pred_q[0], target_q_raw[0], target_q[0], experience.reward[0])
|
||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||
self._backprop_loss(loss)
|
||||
|
||||
@ -245,7 +266,7 @@ class MDQN(BaseQlearner):
|
||||
if __name__ == '__main__':
|
||||
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
||||
|
||||
N_AGENTS = 1
|
||||
N_AGENTS = 2
|
||||
|
||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
||||
@ -255,6 +276,6 @@ if __name__ == '__main__':
|
||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||
|
||||
dqn, target_dqn = BaseDQN(), BaseDQN()
|
||||
learner = MDQN(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(40000), target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||
learner.learn(100000)
|
||||
|
Loading…
x
Reference in New Issue
Block a user