refactored main plus small changes

This commit is contained in:
steffen-illium 2021-05-27 15:31:45 +02:00
parent 827c2b9ac2
commit 8768d9b75f
5 changed files with 141 additions and 13 deletions

View File

@ -15,8 +15,8 @@ class Entity:
class Renderer:
BG_COLOR = (178, 190, 195)#(99, 110, 114)
WHITE = (223, 230, 233)#(200, 200, 200)
BG_COLOR = (178, 190, 195) # (99, 110, 114)
WHITE = (223, 230, 233) # (200, 200, 200)
AGENT_VIEW_COLOR = (9, 132, 227)
def __init__(self, grid_w=16, grid_h=16, cell_size=40, fps=4, grid_lines=True, view_radius=2):

View File

@ -17,10 +17,12 @@ DIRT_INDEX = -1
@dataclass
class DirtProperties:
clean_amount = 10
max_spawn_ratio = 0.1
gain_amount = 0.1
spawn_frequency = 5
clean_amount = 2 # How much does the robot clean with one action.
max_spawn_ratio = 0.2 # On max how much tiles does the dirt spawn in percent.
gain_amount = 0.5 # How much dirt does spawn per tile
spawn_frequency = 5 # Spawn Frequency in Steps
max_local_amount = 1 # Max dirt amount per tile.
max_global_amount = 20 # Max dirt amount in the whole environment.
class SimpleFactory(BaseFactory):
@ -64,13 +66,15 @@ class SimpleFactory(BaseFactory):
self.renderer.render(OrderedDict(dirt=dirt, wall=walls, **agents))
def spawn_dirt(self) -> None:
if not self.state[DIRT_INDEX].sum() > self.max_dirt or not np.argwhere(self.state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0] > 10:
if not np.argwhere(self.state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0] > self._dirt_properties.max_global_amount:
free_for_dirt = self.free_cells(excluded_slices=DIRT_INDEX)
# randomly distribute dirt across the grid
n_dirt_tiles = int(random.uniform(0, self._dirt_properties.max_spawn_ratio) * len(free_for_dirt))
for x, y in free_for_dirt[:n_dirt_tiles]:
self.state[DIRT_INDEX, x, y] += self._dirt_properties.gain_amount
new_value = self.state[DIRT_INDEX, x, y] + self._dirt_properties.gain_amount
self.state[DIRT_INDEX, x, y] = max(new_value, self._dirt_properties.max_local_amount)
else:
pass
@ -130,19 +134,20 @@ class SimpleFactory(BaseFactory):
f'{[self.slice_strings[entity] for entity in cols if entity != self.string_slices["dirt"]]}')
if self._is_clean_up_action(agent_state.action):
if agent_state.action_valid:
reward += 0.9
reward += 1
self.print(f'Agent {agent_state.i} did just clean up some dirt at {agent_state.pos}.')
self.monitor.set('dirt_cleaned', 1)
else:
reward -= 1
self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
f'at {agent_state.pos}, but was unsucsessfull.')
self.monitor.set('failed_cleanup_attempt', 1)
reward -= 0.01
elif self._is_moving_action(agent_state.action):
if agent_state.action_valid:
reward -= 0.2
reward -= 0.01
else:
reward -= 0.1
reward -= 0.5
for entity in cols:
if entity != self.string_slices["dirt"]:

View File

@ -64,6 +64,9 @@ def check_agent_move(state, dim, action):
or y_new >= agent_slice.shape[0]
)
# Check for collision with level walls
valid = valid and not state[LEVEL_IDX][x_new, y_new]
return (x, y), (x_new, y_new), valid

View File

@ -3,6 +3,23 @@ import seaborn as sns
from matplotlib import pyplot as plt
PALETTE = 10 * (
"#377eb8",
"#4daf4a",
"#984ea3",
"#e41a1c",
"#ff7f00",
"#a65628",
"#f781bf",
"#888888",
"#a6cee3",
"#b2df8a",
"#cab2d6",
"#fb9a99",
"#fdbf6f",
)
def plot(filepath, ext='png', tag='monitor', **kwargs):
plt.rcParams.update(kwargs)
@ -18,7 +35,7 @@ def prepare_plot(filepath, results_df, ext='png', tag=''):
_ = sns.lineplot(data=results_df, ci='sd', x='step')
# %%
sns.set_theme(palette='husl', style='whitegrid')
sns.set_theme(palette=PALETTE, style='whitegrid')
font_size = 16
tex_fonts = {
# Use LaTeX to write all text

103
main.py Normal file
View File

@ -0,0 +1,103 @@
import pickle
import warnings
from typing import Union
from os import PathLike
from pathlib import Path
import time
import pandas as pd
from stable_baselines3.common.callbacks import CallbackList
from environments.factory.simple_factory import DirtProperties, SimpleFactory
from environments.logging.monitor import MonitorCallback
from environments.logging.plotting import prepare_plot
from environments.logging.training import TraningMonitor
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
def combine_runs(run_path: Union[str, PathLike]):
run_path = Path(run_path)
df_list = list()
for run, monitor_file in enumerate(run_path.rglob('monitor_*.pick')):
with monitor_file.open('rb') as f:
monitor_list = pickle.load(f)
for m_idx in range(len(monitor_list)):
monitor_list[m_idx]['episode'] = str(m_idx)
monitor_list[m_idx]['run'] = str(run)
df = pd.concat(monitor_list, ignore_index=True)
df['train_step'] = range(df.shape[0])
df = df.fillna(0)
#for column in list(df.columns):
# if column not in ['episode', 'run', 'step', 'train_step']:
# if 'clean' in column or '_vs_' in column:
# df[f'{column}_sum_roll'] = df[column].rolling(window=50, min_periods=1).sum()
# else:
# df[f'{column}_mean_roll'] = df[column].rolling(window=50, min_periods=1).mean()
df_list.append(df)
df = pd.concat(df_list, ignore_index=True)
df = df.fillna(0)
df_group = df.groupby(['episode', 'run']).aggregate({col: 'mean' if col in ['dirt_amount',
'dirty_tiles'] else 'sum'
for col in df.columns if col not in ['episode', 'run']
}).reset_index()
import seaborn as sns
from matplotlib import pyplot as plt
df_melted = df_group.melt(id_vars=['train_step', 'run'],
value_vars=['agent_0_vs_level', 'dirt_amount',
'dirty_tiles', 'step_reward',
'failed_cleanup_attempt',
'dirt_cleaned'], var_name="Variable",
value_name="Score")
sns.lineplot(data=df_melted, x='train_step', y='Score', hue='Variable', ci='sd')
plt.show()
prepare_plot(filepath=run_path / f'{run_path.name}_monitor_out_combined',
results_df=df.filter(regex=(".+_roll|(step)$")), tag='monitor')
print('Plotting done.')
if __name__ == '__main__':
# combine_runs('debug_out/PPO_1622113195')
# exit()
from stable_baselines3 import DQN, PPO
dirt_props = DirtProperties()
time_stamp = int(time.time())
out_path = None
for seed in range(5):
env = SimpleFactory(n_agents=1, dirt_properties=dirt_props)
model = PPO("MlpPolicy", env, verbose=1, ent_coef=0.0, seed=seed)
out_path = Path('../debug_out') / f'{model.__class__.__name__}_{time_stamp}'
identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}'
out_path /= identifier
callbacks = CallbackList(
[TraningMonitor(out_path / f'train_logging_{identifier}.csv'),
MonitorCallback(env, filepath=out_path / f'monitor_{identifier}.pick', plotting=False)]
)
model.learn(total_timesteps=int(5e5), callback=callbacks)
save_path = out_path / f'model_{identifier}.zip'
save_path.parent.mkdir(parents=True, exist_ok=True)
model.save(save_path)
if out_path:
combine_runs(out_path)