deleted policy daptiom, added IAC

This commit is contained in:
Robert Müller 2021-11-16 12:18:20 +01:00
parent 0fe90f3ac0
commit 65056b2c61
13 changed files with 195 additions and 349 deletions

View File

@ -1,3 +0,0 @@
from environments.policy_adaption.natural_rl_environment import matting
from environments.policy_adaption.natural_rl_environment import imgsource
from environments.policy_adaption.natural_rl_environment import natural_env

View File

@ -1,120 +0,0 @@
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import cv2
import skvideo.io
class ImageSource(object):
"""
Source of natural images to be added to a simulated environment.
"""
def get_image(self):
"""
Returns:
an RGB image of [h, w, 3] with a fixed shape.
"""
pass
def reset(self):
""" Called when an episode ends. """
pass
class FixedColorSource(ImageSource):
def __init__(self, shape, color):
"""
Args:
shape: [h, w]
color: a 3-tuple
"""
self.arr = np.zeros((shape[0], shape[1], 3))
self.arr[:, :] = color
def get_image(self):
return np.copy(self.arr)
class RandomColorSource(ImageSource):
def __init__(self, shape):
"""
Args:
shape: [h, w]
"""
self.shape = shape
self.reset()
def reset(self):
self._color = np.random.randint(0, 256, size=(3,))
def get_image(self):
arr = np.zeros((self.shape[0], self.shape[1], 3))
arr[:, :] = self._color
return arr
class NoiseSource(ImageSource):
def __init__(self, shape, strength=50):
"""
Args:
shape: [h, w]
strength (int): the strength of noise, in range [0, 255]
"""
self.shape = shape
self.strength = strength
def get_image(self):
return np.maximum(np.random.randn(
self.shape[0], self.shape[1], 3) * self.strength, 0)
class RandomImageSource(ImageSource):
def __init__(self, shape, filelist):
"""
Args:
shape: [h, w]
filelist: a list of image files
"""
self.shape_wh = shape[::-1]
self.filelist = filelist
self.reset()
def reset(self):
fname = np.random.choice(self.filelist)
im = cv2.imread(fname, cv2.IMREAD_COLOR)
im = im[:, :, ::-1]
im = cv2.resize(im, self.shape_wh)
self._im = im
def get_image(self):
return self._im
class RandomVideoSource(ImageSource):
def __init__(self, shape, filelist):
"""
Args:
shape: [h, w]
filelist: a list of video files
"""
self.shape_wh = shape[::-1]
self.filelist = filelist
self.reset()
def reset(self):
fname = np.random.choice(self.filelist)
self.frames = skvideo.io.vread(fname)
self.frame_idx = 0
def get_image(self):
if self.frame_idx >= self.frames.shape[0]:
self.reset()
im = self.frames[self.frame_idx][:, :, ::-1]
self.frame_idx += 1
im = im[:, :, ::-1]
im = cv2.resize(im, self.shape_wh)
return im

View File

@ -1,32 +0,0 @@
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
class BackgroundMatting(object):
"""
Produce a mask of a given image which will be replaced by natural signals.
"""
def get_mask(self, img):
"""
Take an image of [H, W, 3]. Returns a mask of [H, W]
"""
raise NotImplementedError()
class BackgroundMattingWithColor(BackgroundMatting):
"""
Produce a mask by masking the given color. This is a simple strategy
but effective for many games.
"""
def __init__(self, color):
"""
Args:
color: a (r, g, b) tuple
"""
self._color = color
def get_mask(self, img):
return img == self._color

View File

@ -1,119 +0,0 @@
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import argparse
import glob
import gym
from gym.utils import play
from .matting import BackgroundMattingWithColor
from .imgsource import (
RandomImageSource,
RandomColorSource,
NoiseSource,
RandomVideoSource,
)
class ReplaceBackgroundEnv(gym.ObservationWrapper):
viewer = None
def __init__(self, env, bg_matting, natural_source):
"""
The source must produce a image with a shape that's compatible to
`env.observation_space`.
"""
super(ReplaceBackgroundEnv, self).__init__(env)
self._bg_matting = bg_matting
self._natural_source = natural_source
def observation(self, obs):
mask = self._bg_matting.get_mask(obs)
img = self._natural_source.get_image()
obs[mask] = img[mask]
self._last_ob = obs
return obs
def reset(self):
self._natural_source.reset()
return super(ReplaceBackgroundEnv, self).reset()
# modified from gym/envs/atari/atari_env.py
# This makes the monitor work
def render(self, mode="human"):
img = self._last_ob
if mode == "rgb_array":
return img
elif mode == "human":
from gym.envs.classic_control import rendering
if self.viewer is None:
self.viewer = rendering.SimpleImageViewer()
self.viewer.imshow(img)
return env.viewer.isopen
def make(name='Pong-v0', imgsource='color', files=None):
env = gym.make(name) # gravitar, breakout, MsPacman, Space Invaders
shape2d = env.observation_space.shape[:2]
color = (0, 0, 0) if 'Pong' not in name else (144, 72, 17)
if imgsource == 'video':
imgsource = RandomVideoSource(shape2d, ['/Users/romue/PycharmProjects/EDYS/environments/policy_adaption/natural_rl_environment/videos/stars.mp4'])
elif imgsource == "color":
imgsource = RandomColorSource(shape2d)
elif imgsource == "noise":
imgsource = NoiseSource(shape2d)
elif imgsource == "images":
imgsource = RandomImageSource(shape2d, files)
else:
raise NotImplementedError(f'{imgsource} is not supported, use one of {{video, color, noise}}')
wrapped_env = ReplaceBackgroundEnv(
env, BackgroundMattingWithColor(color), imgsource
)
return wrapped_env
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--env", help="The gym environment to base on")
parser.add_argument("--imgsource", choices=["color", "noise", "images", "videos"])
parser.add_argument(
"--resource-files", help="A glob pattern to obtain images or videos"
)
parser.add_argument("--dump-video", help="If given, a directory to dump video")
args = parser.parse_args()
env = gym.make(args.env)
shape2d = env.observation_space.shape[:2]
if args.imgsource:
if args.imgsource == "color":
imgsource = RandomColorSource(shape2d)
elif args.imgsource == "noise":
imgsource = NoiseSource(shape2d)
else:
files = glob.glob(os.path.expanduser(args.resource_files))
assert len(files), "Pattern {} does not match any files".format(
args.resource_files
)
if args.imgsource == "images":
imgsource = RandomImageSource(shape2d, files)
else:
imgsource = RandomVideoSource(shape2d, files)
wrapped_env = ReplaceBackgroundEnv(
env, BackgroundMattingWithColor((0, 0, 0)), imgsource
)
else:
wrapped_env = env
if args.dump_video:
assert os.path.isdir(args.dump_video)
wrapped_env = gym.wrappers.Monitor(wrapped_env, args.dump_video)
play.play(wrapped_env, zoom=4)

View File

@ -1,8 +0,0 @@
import gym
import glob
from environments.policy_adaption.natural_rl_environment.imgsource import *
from environments.policy_adaption.natural_rl_environment.natural_env import *
if __name__ == "__main__":
env = make('SpaceInvaders-v0', 'video') # gravitar, breakout, MsPacman, Space Invaders
play.play(env, zoom=4)

30
algorithms/utils.py Normal file
View File

@ -0,0 +1,30 @@
import re
import torch
import yaml
from pathlib import Path
from salina import instantiate_class
from salina import TAgent
def load_yaml_file(path: Path):
with path.open() as stream:
cfg = yaml.load(stream, Loader=yaml.FullLoader)
return cfg
def add_env_props(cfg):
env = instantiate_class(cfg['env'].copy())
cfg['agent'].update(dict(observation_size=env.observation_space.shape,
n_actions=env.action_space.n))
class CombineActionsAgent(TAgent):
def __init__(self, pattern=r'^agent\d_action$'):
super().__init__()
self.pattern = pattern
def forward(self, t, **kwargs):
keys = list(self.workspace.keys())
action_keys = sorted([k for k in keys if bool(re.match(self.pattern, k))])
actions = torch.cat([self.get((k, t)) for k in action_keys], 0)
self.set((f'action', t), actions.unsqueeze(0))

View File

@ -1,4 +1,4 @@
def make(env_str, n_agents=1, pomdp_r=2, max_steps=400, stack_n_frames=3):
def make(env_name, n_agents=1, pomdp_r=2, max_steps=400, stack_n_frames=3):
import yaml
from pathlib import Path
from environments.factory.combined_factories import DirtItemFactory
@ -6,7 +6,7 @@ def make(env_str, n_agents=1, pomdp_r=2, max_steps=400, stack_n_frames=3):
from environments.factory.factory_dirt import DirtProperties, DirtFactory
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
with (Path(__file__).parent / 'levels' / 'parameters' / f'{env_str}.yaml').open('r') as stream:
with (Path(__file__).parent / 'levels' / 'parameters' / f'{env_name}.yaml').open('r') as stream:
dictionary = yaml.load(stream, Loader=yaml.FullLoader)
obs_props = ObservationProperties(render_agents=AgentRenderOptions.COMBINED,

View File

@ -1,100 +1,133 @@
from environments.factory import make
from salina import Workspace, TAgent
from salina.agents.gyma import AutoResetGymAgent, GymAgent
from salina.agents.gyma import AutoResetGymAgent
from salina.agents import Agents, TemporalAgent
from salina.rl.functional import _index
from salina.rl.functional import _index, gae
import torch
import torch.nn as nn
from torch.nn.utils import spectral_norm
import torch.optim as optim
from torch.distributions import Categorical
from salina import TAgent, Workspace, get_arguments, get_class, instantiate_class
from pathlib import Path
import numpy as np
from tqdm import tqdm
import time
from algorithms.utils import add_env_props, load_yaml_file, CombineActionsAgent
class A2CAgent(TAgent):
def __init__(self, observation_size, hidden_size, n_actions):
def __init__(self, observation_size, hidden_size, n_actions, agent_id=-1, marl=False):
super().__init__()
observation_size = np.prod(observation_size)
self.agent_id = agent_id
self.marl = marl
self.model = nn.Sequential(
nn.Flatten(),
nn.Linear(observation_size, hidden_size),
nn.ELU(),
nn.Linear(hidden_size, hidden_size),
nn.ELU(),
nn.Linear(hidden_size, n_actions),
)
self.critic_model = nn.Sequential(
nn.Flatten(),
nn.Linear(observation_size, hidden_size),
nn.ELU(),
spectral_norm(nn.Linear(hidden_size, 1)),
nn.Linear(hidden_size, hidden_size),
nn.ELU()
)
self.action_head = nn.Linear(hidden_size, n_actions)
self.critic_head = nn.Linear(hidden_size, 1)
def get_obs(self, t):
observation = self.get(("env/env_obs", t))
if self.marl:
observation = observation.permute(2, 0, 1, 3, 4, 5)
observation = observation[self.agent_id]
return observation
def forward(self, t, stochastic, **kwargs):
observation = self.get(("env/env_obs", t))
scores = self.model(observation)
observation = self.get_obs(t)
features = self.model(observation)
scores = self.action_head(features)
probs = torch.softmax(scores, dim=-1)
critic = self.critic_model(observation).squeeze(-1)
critic = self.critic_head(features).squeeze(-1)
if stochastic:
action = torch.distributions.Categorical(probs).sample()
else:
action = probs.argmax(1)
self.set(("action", t), action)
self.set(("action_probs", t), probs)
self.set(("critic", t), critic)
agent_str = f'agent{self.agent_id}_'
self.set((f'{agent_str}action', t), action)
self.set((f'{agent_str}action_probs', t), probs)
self.set((f'{agent_str}critic', t), critic)
if __name__ == '__main__':
# Setup agents and workspace
env_agent = AutoResetGymAgent(make, dict(env_str='DirtyFactory-v0'), n_envs=1)
a2c_agent = A2CAgent(3*4*5*5, 96, 10)
# Setup workspace
uid = time.time()
workspace = Workspace()
n_agents = 1
eval_agent = Agents(GymAgent(make, dict(env_str='DirtyFactory-v0'), n_envs=1), a2c_agent)
for i in range(100):
eval_agent(workspace, t=i, save_render=True, stochastic=True)
# load config
cfg = load_yaml_file(Path(__file__).parent / 'sat_mad.yaml')
add_env_props(cfg)
cfg['env'].update({'n_agents': n_agents})
# instantiate agent and env
env_agent = AutoResetGymAgent(
get_class(cfg['env']),
get_arguments(cfg['env']),
n_envs=1
)
a2c_agents = [instantiate_class({**cfg['agent'],
'agent_id': agent_id,
'marl': n_agents > 1})
for agent_id in range(n_agents)]
assert False
# combine agents
acquisition_agent = TemporalAgent(Agents(env_agent, a2c_agent))
acquisition_agent.seed(0)
acquisition_agent = TemporalAgent(Agents(env_agent, *a2c_agents, CombineActionsAgent()))
acquisition_agent.seed(69)
# optimizers & other parameters
optimizer = optim.Adam(a2c_agent.parameters(), lr=1e-3)
n_timesteps = 10
cfg_optim = cfg['algorithm']['optimizer']
optimizers = [get_class(cfg_optim)(a2c_agent.parameters(), **get_arguments(cfg_optim))
for a2c_agent in a2c_agents]
n_timesteps = cfg['algorithm']['n_timesteps']
# Decision making loop
for epoch in range(200000):
workspace.zero_grad()
if epoch > 0:
workspace.copy_n_last_steps(1)
acquisition_agent(workspace, t=1, n_steps=n_timesteps-1, stochastic=True)
else:
acquisition_agent(workspace, t=0, n_steps=n_timesteps, stochastic=True)
#for k in workspace.keys():
# print(f'{k} ==> {workspace[k].size()}')
critic, done, action_probs, reward, action = workspace[
"critic", "env/done", "action_probs", "env/reward", "action"
]
best = -float('inf')
with tqdm(range(int(cfg['algorithm']['max_epochs'] / n_timesteps))) as pbar:
for epoch in pbar:
workspace.zero_grad()
if epoch > 0:
workspace.copy_n_last_steps(1)
acquisition_agent(workspace, t=1, n_steps=n_timesteps-1, stochastic=True)
else:
acquisition_agent(workspace, t=0, n_steps=n_timesteps, stochastic=True)
target = reward[1:] + 0.99 * critic[1:].detach() * (1 - done[1:].float())
td = target - critic[:-1]
td_error = td ** 2
critic_loss = td_error.mean()
entropy_loss = Categorical(action_probs).entropy().mean()
action_logp = _index(action_probs, action).log()
a2c_loss = action_logp[:-1] * td.detach()
a2c_loss = a2c_loss.mean()
loss = (
-0.001 * entropy_loss
+ 1.0 * critic_loss
- 0.1 * a2c_loss
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
for agent_id in range(n_agents):
critic, done, action_probs, reward, action = workspace[
f"agent{agent_id}_critic", "env/done",
f'agent{agent_id}_action_probs', "env/reward",
f"agent{agent_id}_action"
]
td = gae(critic, reward, done, 0.99, 0.3)
td_error = td ** 2
critic_loss = td_error.mean()
entropy_loss = Categorical(action_probs).entropy().mean()
action_logp = _index(action_probs, action).log()
a2c_loss = action_logp[:-1] * td.detach()
a2c_loss = a2c_loss.mean()
loss = (
-0.001 * entropy_loss
+ 1.0 * critic_loss
- 0.1 * a2c_loss
)
optimizer = optimizers[agent_id]
optimizer.zero_grad()
loss.backward()
#torch.nn.utils.clip_grad_norm_(a2c_agents[agent_id].parameters(), 2)
optimizer.step()
# Compute the cumulated reward on final_state
creward = workspace["env/cumulated_reward"]
creward = creward[done]
if creward.size()[0] > 0:
cum_r = creward.mean().item()
if cum_r > best:
# torch.save(a2c_agent.state_dict(), Path(__file__).parent / f'agent_{uid}.pt')
best = cum_r
pbar.set_description(f"Cum. r: {cum_r:.2f}, Best r. so far: {best:.2f}", refresh=True)
# Compute the cumulated reward on final_state
creward = workspace["env/cumulated_reward"]
creward = creward[done]
if creward.size()[0] > 0:
print(f"Cumulative reward at A2C step #{(1+epoch)*n_timesteps}: {creward.mean().item()}")

26
studies/sat_mad.yaml Normal file
View File

@ -0,0 +1,26 @@
agent:
classname: studies.sat_mad.A2CAgent
observation_size: 4*5*5
hidden_size: 128
n_actions: 10
env:
classname: environments.factory.make
env_name: "DirtyFactory-v0"
n_agents: 1
pomdp_r: 2
max_steps: 400
stack_n_frames: 3
algorithm:
max_epochs: 1000000
n_envs: 1
n_timesteps: 16
discount_factor: 0.99
entropy_coef: 0.01
critic_coef: 1.0
gae: 0.3
optimizer:
classname: torch.optim.Adam
lr: 0.0003
weight_decay: 0.0

39
studies/viz_salina.py Normal file
View File

@ -0,0 +1,39 @@
from salina.agents import Agents, TemporalAgent
import torch
from salina import Workspace, get_arguments, get_class, instantiate_class
from pathlib import Path
from salina.agents.gyma import GymAgent
import time
from algorithms.utils import load_yaml_file, add_env_props
if __name__ == '__main__':
# Setup workspace
uid = time.time()
workspace = Workspace()
weights = Path('/Users/romue/PycharmProjects/EDYS/studies/agent_1636994369.145843.pt')
cfg = load_yaml_file(Path(__file__).parent / 'sat_mad.yaml')
add_env_props(cfg)
cfg['env'].update({'n_agents': 2})
# instantiate agent and env
env_agent = GymAgent(
get_class(cfg['env']),
get_arguments(cfg['env']),
n_envs=1
)
agents = []
for _ in range(2):
a2c_agent = instantiate_class(cfg['agent'])
if weights:
a2c_agent.load_state_dict(torch.load(weights))
agents.append(a2c_agent)
# combine agents
acquisition_agent = TemporalAgent(Agents(env_agent, *agents))
acquisition_agent.seed(42)
acquisition_agent(workspace, t=0, n_steps=400, stochastic=False, save_render=True)