Occupation Map
This commit is contained in:
parent
65056b2c61
commit
59484f49c9
@ -50,6 +50,11 @@ class BaseFactory(gym.Env):
|
||||
def movement_actions(self):
|
||||
return self._actions.movement_actions
|
||||
|
||||
@property
|
||||
def params(self) -> dict:
|
||||
d = {key: val for key, val in self.__dict__.items() if not key.startswith('_') and not key.startswith('__')}
|
||||
return d
|
||||
|
||||
def __enter__(self):
|
||||
return self if self.obs_prop.frames_to_stack == 0 else \
|
||||
FrameStack(self, self.obs_prop.frames_to_stack)
|
||||
@ -576,8 +581,7 @@ class BaseFactory(gym.Env):
|
||||
|
||||
def save_params(self, filepath: Path):
|
||||
# noinspection PyProtectedMember
|
||||
# d = {key: val._asdict() if hasattr(val, '_asdict') else val for key, val in self.__dict__.items()
|
||||
d = {key: val for key, val in self.__dict__.items() if not key.startswith('_') and not key.startswith('__')}
|
||||
d = self.params
|
||||
filepath.parent.mkdir(parents=True, exist_ok=True)
|
||||
with filepath.open('w') as f:
|
||||
simplejson.dump(d, f, indent=4, namedtuple_as_object=True)
|
||||
@ -587,6 +591,7 @@ class BaseFactory(gym.Env):
|
||||
|
||||
for entity_group in self._entities:
|
||||
summary.update({f'{REC_TAC}{entity_group.name}': entity_group.summarize_states(n_steps=self._steps)})
|
||||
|
||||
return summary
|
||||
|
||||
def print(self, string):
|
||||
|
@ -239,6 +239,11 @@ class DirtFactory(BaseFactory):
|
||||
|
||||
if agent.temp_action == CLEAN_UP_ACTION:
|
||||
if agent.temp_valid:
|
||||
# Reward if pickup succeds,
|
||||
# 0.5 on every pickup
|
||||
reward += 0.5
|
||||
if self.dirt_prop.done_when_clean and (len(self[c.DIRT]) == 0):
|
||||
# 0.5 additional reward for the very last pickup
|
||||
reward += 0.5
|
||||
self.print(f'{agent.name} did just clean up some dirt at {agent.pos}.')
|
||||
info_dict.update(dirt_cleaned=1)
|
||||
|
@ -3,6 +3,8 @@ from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import simplejson
|
||||
from stable_baselines3.common.callbacks import BaseCallback
|
||||
|
||||
@ -10,21 +12,39 @@ from environments.factory.base.base_factory import REC_TAC
|
||||
|
||||
|
||||
# noinspection PyAttributeOutsideInit
|
||||
from environments.helpers import Constants as c
|
||||
|
||||
|
||||
class RecorderCallback(BaseCallback):
|
||||
|
||||
def __init__(self, filepath: Union[str, Path], occupation_map: bool = False, trajectory_map: bool = False):
|
||||
def __init__(self, filepath: Union[str, Path], occupation_map: bool = False, trajectory_map: bool = False,
|
||||
entities='all'):
|
||||
super(RecorderCallback, self).__init__()
|
||||
self.trajectory_map = trajectory_map
|
||||
self.occupation_map = occupation_map
|
||||
self.filepath = Path(filepath)
|
||||
self._recorder_dict = defaultdict(list)
|
||||
self._recorder_out_list = list()
|
||||
self._env_params = None
|
||||
self.do_record: bool
|
||||
if isinstance(entities, str):
|
||||
if entities.lower() == 'all':
|
||||
self._entities = None
|
||||
else:
|
||||
self._entities = [entities]
|
||||
else:
|
||||
self._entities = entities
|
||||
self.started = False
|
||||
self.closed = False
|
||||
|
||||
def read_params(self, params):
|
||||
self._env_params = params
|
||||
|
||||
def read_info(self, env_idx, info: dict):
|
||||
if info_dict := {key.replace(REC_TAC, ''): val for key, val in info.items() if key.startswith(f'{REC_TAC}')}:
|
||||
if self._entities:
|
||||
info_dict = {k: v for k, v in info_dict.items() if k in self._entities}
|
||||
|
||||
info_dict.update(episode=(self.num_timesteps + env_idx))
|
||||
self._recorder_dict[env_idx].append(info_dict)
|
||||
else:
|
||||
@ -51,14 +71,27 @@ class RecorderCallback(BaseCallback):
|
||||
if self.do_record and self.started:
|
||||
# self.out_file.unlink(missing_ok=True)
|
||||
with self.filepath.open('w') as f:
|
||||
out_dict = {'episodes': self._recorder_out_list}
|
||||
out_dict = {'episodes': self._recorder_out_list, 'header': self._env_params}
|
||||
try:
|
||||
simplejson.dump(out_dict, f, indent=4)
|
||||
except TypeError:
|
||||
print('Shit')
|
||||
|
||||
if self.occupation_map:
|
||||
print('Recorder files were dumped to disk, now plotting the occupation map...')
|
||||
a = np.zeros((15, 15))
|
||||
for episode in out_dict['episodes']:
|
||||
df = pd.DataFrame([y for x in episode['steps'] for y in x['Agents']])
|
||||
|
||||
b = list(df[['x', 'y']].to_records(index=False))
|
||||
|
||||
np.add.at(a, tuple(zip(*b)), 1)
|
||||
|
||||
# a = np.rot90(a)
|
||||
import seaborn as sns
|
||||
from matplotlib import pyplot as plt
|
||||
hm = sns.heatmap(data=a)
|
||||
hm.set_title('Very Nice Heatmap')
|
||||
plt.show()
|
||||
|
||||
if self.trajectory_map:
|
||||
print('Recorder files were dumped to disk, now plotting the occupation map...')
|
||||
|
@ -19,6 +19,8 @@ if __name__ == '__main__':
|
||||
model_name = 'A2C_ItsDirt'
|
||||
run_id = 0
|
||||
determin = True
|
||||
render=False
|
||||
record = True
|
||||
seed = 67
|
||||
n_agents = 1
|
||||
out_path = Path('study_out/e_1_Now_with_doors/no_obs/dirt/A2C_Now_with_doors/0_A2C_Now_with_doors')
|
||||
@ -31,19 +33,21 @@ if __name__ == '__main__':
|
||||
env_kwargs['dirt_prop']['max_spawn_amount'] = gain_amount
|
||||
del env_kwargs['dirt_prop']['gain_amount']
|
||||
|
||||
env_kwargs.update(record_episodes=False)
|
||||
env_kwargs.update(record_episodes=record)
|
||||
|
||||
this_model = out_path / 'model.zip'
|
||||
|
||||
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in model_name)
|
||||
models = [model_cls.load(this_model) for _ in range(n_agents)]
|
||||
|
||||
with RecorderCallback(filepath=Path() / 'recorder_out_DQN.json') as recorder:
|
||||
with RecorderCallback(filepath=Path() / 'recorder_out_DQN.json', occupation_map=True,
|
||||
entities=['Agents']) as recorder:
|
||||
# Init Env
|
||||
with DirtFactory(**env_kwargs) as env:
|
||||
obs_shape = env.observation_space.shape
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
for episode in range(5):
|
||||
recorder.read_params(env.params)
|
||||
for episode in range(200):
|
||||
env_state = env.reset()
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
@ -53,6 +57,7 @@ if __name__ == '__main__':
|
||||
deterministic=determin)[0] for j, model in enumerate(models)]
|
||||
else:
|
||||
actions = models[0].predict(env_state, deterministic=determin)[0]
|
||||
if False:
|
||||
if any([agent.pos in [door.pos for door in env.unwrapped[c.DOORS]]
|
||||
for agent in env.unwrapped[c.AGENT]]):
|
||||
print('On Door')
|
||||
@ -60,6 +65,7 @@ if __name__ == '__main__':
|
||||
|
||||
recorder.read_info(0, info_obj)
|
||||
rew += step_r
|
||||
if render:
|
||||
env.render()
|
||||
if done_bool:
|
||||
recorder.read_done(0, done_bool)
|
||||
|
@ -66,8 +66,8 @@ There are further distinctions to be made:
|
||||
"""
|
||||
|
||||
n_agents = 4
|
||||
ood_monitor_file = f'e_1_monitor_{n_agents}_agents.pick'
|
||||
baseline_monitor_file = 'e_1_baseline_monitor.pick'
|
||||
ood_monitor_file = f'e_1_{n_agents}_agents'
|
||||
baseline_monitor_file = 'e_1_baseline'
|
||||
|
||||
|
||||
def policy_model_kwargs():
|
||||
@ -103,7 +103,7 @@ def load_model_run_baseline(seed_path, env_to_run):
|
||||
env_kwargs = simplejson.load(f)
|
||||
env_kwargs.update(done_at_collision=True)
|
||||
# Monitor Init
|
||||
with MonitorCallback(filepath=seed_path / baseline_monitor_file) as monitor:
|
||||
with MonitorCallback(filepath=seed_path / f'{baseline_monitor_file}.pick') as monitor:
|
||||
# Init Env
|
||||
with env_to_run(**env_kwargs) as env_factory:
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
@ -139,7 +139,7 @@ def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
|
||||
done_at_collision=True,
|
||||
**additional_kwargs_dict.get('post_training_kwargs', {}))
|
||||
# Monitor Init
|
||||
with MonitorCallback(filepath=seed_path / ood_monitor_file) as monitor:
|
||||
with MonitorCallback(filepath=seed_path / f'{ood_monitor_file}.pick') as monitor:
|
||||
# Init Env
|
||||
with env_to_run(**env_kwargs) as env_factory:
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
@ -172,7 +172,7 @@ def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
|
||||
|
||||
|
||||
def start_mp_study_run(envs_map, policies_path):
|
||||
paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / ood_monitor_file).exists())
|
||||
paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / f'{ood_monitor_file}.pick').exists())
|
||||
if paths:
|
||||
import multiprocessing as mp
|
||||
pool = mp.Pool(mp.cpu_count())
|
||||
@ -185,7 +185,8 @@ def start_mp_study_run(envs_map, policies_path):
|
||||
|
||||
|
||||
def start_mp_baseline_run(envs_map, policies_path):
|
||||
paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / baseline_monitor_file).exists())
|
||||
paths = list(y for y in policies_path.iterdir() if y.is_dir() and
|
||||
not (y / f'{baseline_monitor_file}.pick').exists())
|
||||
if paths:
|
||||
import multiprocessing as mp
|
||||
pool = mp.Pool(mp.cpu_count())
|
||||
@ -197,11 +198,17 @@ def start_mp_baseline_run(envs_map, policies_path):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# What to do:
|
||||
train = True
|
||||
baseline_run = True
|
||||
ood_run = True
|
||||
plotting = True
|
||||
|
||||
train_steps = 5e6
|
||||
n_seeds = 3
|
||||
|
||||
# Define a global studi save path
|
||||
start_time = 'Now_with_doors' # int(time.time())
|
||||
start_time = 'exploring_obs_stack' # int(time.time())
|
||||
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
|
||||
|
||||
# Define Global Env Parameters
|
||||
@ -209,7 +216,7 @@ if __name__ == '__main__':
|
||||
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
|
||||
omit_agent_self=True,
|
||||
additional_agent_placeholder=None,
|
||||
frames_to_stack=3,
|
||||
frames_to_stack=6,
|
||||
pomdp_r=2
|
||||
)
|
||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||
@ -327,7 +334,7 @@ if __name__ == '__main__':
|
||||
|
||||
# Train starts here ############################################################
|
||||
# Build Major Loop parameters, parameter versions, Env Classes and models
|
||||
if False:
|
||||
if train:
|
||||
for obs_mode in observation_modes.keys():
|
||||
for env_name in env_names:
|
||||
for model_cls in [h.MODEL_MAP['A2C']]:
|
||||
@ -417,7 +424,7 @@ if __name__ == '__main__':
|
||||
|
||||
# Evaluation starts here #####################################################
|
||||
# First Iterate over every model and monitor "as trained"
|
||||
if True:
|
||||
if baseline_run:
|
||||
print('Start Baseline Tracking')
|
||||
for obs_mode in observation_modes:
|
||||
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == obs_mode)
|
||||
@ -432,7 +439,7 @@ if __name__ == '__main__':
|
||||
print('Baseline Tracking done')
|
||||
|
||||
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
|
||||
if True:
|
||||
if ood_run:
|
||||
print('Start OOD Tracking')
|
||||
for obs_mode in observation_modes:
|
||||
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == obs_mode)
|
||||
@ -449,17 +456,18 @@ if __name__ == '__main__':
|
||||
print('OOD Tracking Done')
|
||||
|
||||
# Plotting
|
||||
if True:
|
||||
if plotting:
|
||||
# TODO: Plotting
|
||||
print('Start Plotting')
|
||||
for observation_folder in (x for x in study_root_path.iterdir() if x.is_dir()):
|
||||
df_list = list()
|
||||
for observation_folder in (x for x in study_root_path.iterdir() if x.is_dir()):
|
||||
|
||||
for env_folder in (x for x in observation_folder.iterdir() if x.is_dir()):
|
||||
for model_folder in (x for x in env_folder.iterdir() if x.is_dir()):
|
||||
# Gather per seed results in this list
|
||||
|
||||
for seed_folder in (x for x in model_folder.iterdir() if x.is_dir()):
|
||||
for monitor_file in [baseline_monitor_file, ood_monitor_file]:
|
||||
for monitor_file in [f'{baseline_monitor_file}.pick', f'{ood_monitor_file}.pick']:
|
||||
|
||||
with (seed_folder / monitor_file).open('rb') as f:
|
||||
monitor_df = pickle.load(f)
|
||||
@ -480,7 +488,7 @@ if __name__ == '__main__':
|
||||
|
||||
df = pd.concat(df_list, ignore_index=True)
|
||||
df = df.fillna(0)
|
||||
|
||||
for env_name in env_names:
|
||||
for id_col in id_cols:
|
||||
df[id_col] = df[id_col].astype(str)
|
||||
|
||||
@ -509,14 +517,14 @@ if __name__ == '__main__':
|
||||
# Plotting
|
||||
# fig, ax = plt.subplots(figsize=(11.7, 8.27))
|
||||
|
||||
c = sns.catplot(data=df_melted[df_melted['obs_mode'] == observation_folder.name],
|
||||
x='Measurement', hue='monitor', row='model', col='env', y='Score',
|
||||
sharey=False, kind="box", height=4, aspect=.7, legend_out=False, legend=False,
|
||||
c = sns.catplot(data=df_melted[df_melted['env'] == env_name],
|
||||
x='Measurement', hue='monitor', row='model', col='obs_mode', y='Score',
|
||||
sharey=True, kind="box", height=4, aspect=.7, legend_out=False, legend=False,
|
||||
showfliers=False)
|
||||
c.set_xticklabels(rotation=65, horizontalalignment='right')
|
||||
# c.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
|
||||
c.fig.suptitle(f"Cat plot for {observation_folder.name}")
|
||||
c.fig.suptitle(f"Cat plot for {env_name}")
|
||||
# plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
|
||||
plt.tight_layout()
|
||||
plt.savefig(study_root_path / f'results_{n_agents}_agents_{observation_folder.name}.png')
|
||||
plt.savefig(study_root_path / f'results_{n_agents}_agents_{env_name}.png')
|
||||
pass
|
||||
|
Loading…
x
Reference in New Issue
Block a user