refactored algorithms
This commit is contained in:
parent
f0bb507121
commit
42f0dde056
102
algorithms/common.py
Normal file
102
algorithms/common.py
Normal file
@ -0,0 +1,102 @@
|
||||
from typing import NamedTuple, Union
|
||||
from collections import deque, OrderedDict
|
||||
import numpy as np
|
||||
import random
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class BaseLearner:
|
||||
def __init__(self, env, n_agents, lr):
|
||||
self.env = env
|
||||
self.n_agents = n_agents
|
||||
self.lr = lr
|
||||
self.device = 'cpu'
|
||||
|
||||
def to(self, device):
|
||||
self.device = device
|
||||
for attr, value in self.__dict__.items():
|
||||
if isinstance(value, nn.Module):
|
||||
value = value.to(self.device)
|
||||
return self
|
||||
|
||||
|
||||
class Experience(NamedTuple):
|
||||
# can be use for a single (s_t, a, r s_{t+1}) tuple
|
||||
# or for a batch of tuples
|
||||
observation: np.ndarray
|
||||
next_observation: np.ndarray
|
||||
action: np.ndarray
|
||||
reward: Union[float, np.ndarray]
|
||||
done : Union[bool, np.ndarray]
|
||||
|
||||
|
||||
class BaseBuffer:
|
||||
def __init__(self, size: int):
|
||||
self.size = size
|
||||
self.experience = deque(maxlen=size)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.experience)
|
||||
|
||||
def add(self, experience):
|
||||
self.experience.append(experience)
|
||||
|
||||
def sample(self, k, cer=4):
|
||||
sample = random.choices(self.experience, k=k-cer)
|
||||
for i in range(cer): sample += [self.experience[-i]]
|
||||
observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float()
|
||||
next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float()
|
||||
actions = torch.tensor([e.action for e in sample]).long()
|
||||
rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1)
|
||||
dones = torch.tensor([e.done for e in sample]).float().view(-1, 1)
|
||||
return Experience(observations, next_observations, actions, rewards, dones)
|
||||
|
||||
|
||||
def soft_update(local_model, target_model, tau):
|
||||
# taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb
|
||||
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
|
||||
target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data)
|
||||
|
||||
|
||||
def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'):
|
||||
activations = {'elu': nn.ELU, 'relu': nn.ReLU,
|
||||
'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh,
|
||||
'gelu': nn.GELU, 'identity': nn.Identity}
|
||||
layers = [('Flatten', nn.Flatten())] if flatten else []
|
||||
for i in range(1, len(dims)):
|
||||
layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i])))
|
||||
activation_str = activation if i != len(dims)-1 else activation_last
|
||||
layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]()))
|
||||
return nn.Sequential(OrderedDict(layers))
|
||||
|
||||
|
||||
class BaseDQN(nn.Module):
|
||||
def __init__(self, dims=[3*5*5, 64, 64, 9]):
|
||||
super(BaseDQN, self).__init__()
|
||||
self.net = mlp_maker(dims, flatten=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def act(self, x) -> np.ndarray:
|
||||
action = self.forward(x).max(-1)[1].numpy()
|
||||
return action
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class BaseDDQN(BaseDQN):
|
||||
def __init__(self,
|
||||
backbone_dims=[3*5*5, 64, 64],
|
||||
value_dims=[64, 1],
|
||||
advantage_dims=[64, 9]):
|
||||
super(BaseDDQN, self).__init__(backbone_dims)
|
||||
self.net = mlp_maker(backbone_dims, flatten=True)
|
||||
self.value_head = mlp_maker(value_dims)
|
||||
self.advantage_head = mlp_maker(advantage_dims)
|
||||
|
||||
def forward(self, x):
|
||||
features = self.net(x)
|
||||
advantages = self.advantage_head(features)
|
||||
values = self.value_head(features)
|
||||
return values + (advantages - advantages.mean())
|
@ -1,277 +0,0 @@
|
||||
from typing import NamedTuple, Union
|
||||
from collections import deque, OrderedDict
|
||||
import numpy as np
|
||||
import random
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Experience(NamedTuple):
|
||||
# can be use for a single (s_t, a, r s_{t+1}) tuple
|
||||
# or for a batch of tuples
|
||||
observation: np.ndarray
|
||||
next_observation: np.ndarray
|
||||
action: np.ndarray
|
||||
reward: Union[float, np.ndarray]
|
||||
done : Union[bool, np.ndarray]
|
||||
|
||||
|
||||
class BaseBuffer:
|
||||
def __init__(self, size: int):
|
||||
self.size = size
|
||||
self.experience = deque(maxlen=size)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.experience)
|
||||
|
||||
def add(self, experience):
|
||||
self.experience.append(experience)
|
||||
|
||||
def sample(self, k, cer=4):
|
||||
sample = random.choices(self.experience, k=k-cer)
|
||||
for i in range(cer): sample += [self.experience[-i]]
|
||||
observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float()
|
||||
next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float()
|
||||
actions = torch.tensor([e.action for e in sample]).long()
|
||||
rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1)
|
||||
dones = torch.tensor([e.done for e in sample]).float().view(-1, 1)
|
||||
return Experience(observations, next_observations, actions, rewards, dones)
|
||||
|
||||
|
||||
|
||||
|
||||
def soft_update(local_model, target_model, tau):
|
||||
# taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb
|
||||
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
|
||||
target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data)
|
||||
|
||||
|
||||
def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'):
|
||||
activations = {'elu': nn.ELU, 'relu': nn.ReLU,
|
||||
'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh,
|
||||
'gelu': nn.GELU, 'identity': nn.Identity}
|
||||
layers = [('Flatten', nn.Flatten())] if flatten else []
|
||||
for i in range(1, len(dims)):
|
||||
layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i])))
|
||||
activation_str = activation if i != len(dims)-1 else activation_last
|
||||
layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]()))
|
||||
return nn.Sequential(OrderedDict(layers))
|
||||
|
||||
|
||||
class BaseDQN(nn.Module):
|
||||
def __init__(self, dims=[3*5*5, 64, 64, 9]):
|
||||
super(BaseDQN, self).__init__()
|
||||
self.net = mlp_maker(dims, flatten=True)
|
||||
|
||||
def act(self, x) -> np.ndarray:
|
||||
with torch.no_grad():
|
||||
action = self.forward(x).max(-1)[1].numpy()
|
||||
return action
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class BaseDDQN(BaseDQN):
|
||||
def __init__(self,
|
||||
backbone_dims=[3*5*5, 64, 64],
|
||||
value_dims=[64,1],
|
||||
advantage_dims=[64,9]):
|
||||
super(BaseDDQN, self).__init__(backbone_dims)
|
||||
self.net = mlp_maker(backbone_dims, flatten=True)
|
||||
self.value_head = mlp_maker(value_dims)
|
||||
self.advantage_head = mlp_maker(advantage_dims)
|
||||
|
||||
def forward(self, x):
|
||||
features = self.net(x)
|
||||
advantages = self.advantage_head(features)
|
||||
values = self.value_head(features)
|
||||
return values + (advantages - advantages.mean())
|
||||
|
||||
|
||||
class BaseQlearner:
|
||||
def __init__(self, q_net, target_q_net, env, buffer_size, target_update, eps_end, n_agents=1,
|
||||
gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10,
|
||||
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
|
||||
self.q_net = q_net
|
||||
self.target_q_net = target_q_net
|
||||
self.target_q_net.eval()
|
||||
soft_update(self.q_net, self.target_q_net, tau=1.0)
|
||||
self.env = env
|
||||
self.buffer = BaseBuffer(buffer_size)
|
||||
self.target_update = target_update
|
||||
self.eps = 1.
|
||||
self.eps_end = eps_end
|
||||
self.exploration_fraction = exploration_fraction
|
||||
self.batch_size = batch_size
|
||||
self.gamma = gamma
|
||||
self.train_every_n_steps = train_every_n_steps
|
||||
self.n_grad_steps = n_grad_steps
|
||||
self.lr = lr
|
||||
self.tau = tau
|
||||
self.reg_weight = reg_weight
|
||||
self.n_agents = n_agents
|
||||
self.device = 'cpu'
|
||||
self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr)
|
||||
self.max_grad_norm = max_grad_norm
|
||||
self.running_reward = deque(maxlen=5)
|
||||
self.running_loss = deque(maxlen=5)
|
||||
self._n_updates = 0
|
||||
|
||||
def to(self, device):
|
||||
self.device = device
|
||||
return self
|
||||
|
||||
@staticmethod
|
||||
def weights_init(module, activation='leaky_relu'):
|
||||
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||||
nn.init.orthogonal_(module.weight, gain=torch.nn.init.calculate_gain(activation))
|
||||
if module.bias is not None:
|
||||
module.bias.data.fill_(0.0)
|
||||
|
||||
def anneal_eps(self, step, n_steps):
|
||||
fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0)
|
||||
self.eps = 1 + fraction * (self.eps_end - 1)
|
||||
|
||||
def get_action(self, obs) -> Union[int, np.ndarray]:
|
||||
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
|
||||
if np.random.rand() > self.eps:
|
||||
action = self.q_net.act(o.float())
|
||||
else:
|
||||
action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)])
|
||||
return action
|
||||
|
||||
def learn(self, n_steps):
|
||||
step = 0
|
||||
while step < n_steps:
|
||||
obs, done = self.env.reset(), False
|
||||
total_reward = 0
|
||||
while not done:
|
||||
|
||||
action = self.get_action(obs)
|
||||
|
||||
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
|
||||
|
||||
experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done) # do we really need to copy?
|
||||
self.buffer.add(experience)
|
||||
# end of step routine
|
||||
obs = next_obs
|
||||
step += 1
|
||||
total_reward += reward
|
||||
self.anneal_eps(step, n_steps)
|
||||
|
||||
if step % self.train_every_n_steps == 0:
|
||||
self.train()
|
||||
self._n_updates += 1
|
||||
if step % self.target_update == 0:
|
||||
print('UPDATE')
|
||||
soft_update(self.q_net, self.target_q_net, tau=self.tau)
|
||||
|
||||
self.running_reward.append(total_reward)
|
||||
if step % 10 == 0:
|
||||
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t'
|
||||
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self._n_updates}')
|
||||
|
||||
def _training_routine(self, obs, next_obs, action):
|
||||
current_q_values = self.q_net(obs)
|
||||
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
|
||||
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
||||
return current_q_values, next_q_values_raw
|
||||
|
||||
def _backprop_loss(self, loss):
|
||||
# log loss
|
||||
self.running_loss.append(loss.item())
|
||||
# Optimize the model
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm)
|
||||
self.optimizer.step()
|
||||
|
||||
def train(self):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
if self.n_agents <= 1:
|
||||
pred_q, target_q_raw = self._training_routine(experience.observation,
|
||||
experience.next_observation,
|
||||
experience.action)
|
||||
|
||||
else:
|
||||
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
|
||||
for agent_i in range(self.n_agents):
|
||||
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
|
||||
experience.next_observation[:, agent_i],
|
||||
experience.action[:, agent_i].unsqueeze(-1))
|
||||
pred_q += q_values
|
||||
target_q_raw += next_q_values_raw
|
||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||
self._backprop_loss(loss)
|
||||
|
||||
|
||||
class MunchhausenQLearner(BaseQlearner):
|
||||
def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs):
|
||||
super(MunchhausenQLearner, self).__init__(*args, **kwargs)
|
||||
assert self.n_agents == 1, 'M-DQN currently only supports single agent training'
|
||||
self.temperature = temperature
|
||||
self.alpha = alpha
|
||||
self.clip0 = clip_l0
|
||||
|
||||
def tau_ln_pi(self, qs):
|
||||
# computes log(softmax(qs/temperature))
|
||||
# Custom log-sum-exp trick from page 18 to compute the log-policy terms
|
||||
v_k = qs.max(-1)[0].unsqueeze(-1)
|
||||
advantage = qs - v_k
|
||||
logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1)
|
||||
tau_ln_pi = advantage - self.temperature * logsum
|
||||
return tau_ln_pi
|
||||
|
||||
def train(self):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
|
||||
q_target_next = self.target_q_net(experience.next_observation).detach()
|
||||
tau_log_pi_next = self.tau_ln_pi(q_target_next)
|
||||
|
||||
q_k_targets = self.target_q_net(experience.observation).detach()
|
||||
log_pi = self.tau_ln_pi(q_k_targets)
|
||||
|
||||
pi_target = F.softmax(q_target_next / self.temperature, dim=-1)
|
||||
q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1)
|
||||
|
||||
munchausen_addon = log_pi.gather(-1, experience.action)
|
||||
|
||||
munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0))
|
||||
|
||||
# Compute Q targets for current states
|
||||
m_q_target = munchausen_reward + q_target
|
||||
|
||||
# Get expected Q values from local model
|
||||
q_k = self.q_net(experience.observation)
|
||||
pred_q = q_k.gather(-1, experience.action)
|
||||
|
||||
# Compute loss
|
||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2))
|
||||
self._backprop_loss(loss)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
||||
|
||||
N_AGENTS = 1
|
||||
|
||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False)
|
||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||
|
||||
dqn, target_dqn = BaseDDQN(), BaseDDQN()
|
||||
learner = MunchhausenQLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||
learner.learn(100000)
|
53
algorithms/m_q_learner.py
Normal file
53
algorithms/m_q_learner.py
Normal file
@ -0,0 +1,53 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from algorithms.q_learner import QLearner
|
||||
|
||||
|
||||
class MQLearner(QLearner):
|
||||
# Munchhausen Q-Learning
|
||||
def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs):
|
||||
super(MQLearner, self).__init__(*args, **kwargs)
|
||||
assert self.n_agents == 1, 'M-DQN currently only supports single agent training'
|
||||
self.temperature = temperature
|
||||
self.alpha = alpha
|
||||
self.clip0 = clip_l0
|
||||
|
||||
def tau_ln_pi(self, qs):
|
||||
# computes log(softmax(qs/temperature))
|
||||
# Custom log-sum-exp trick from page 18 to compute the log-policy terms
|
||||
v_k = qs.max(-1)[0].unsqueeze(-1)
|
||||
advantage = qs - v_k
|
||||
logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1)
|
||||
tau_ln_pi = advantage - self.temperature * logsum
|
||||
return tau_ln_pi
|
||||
|
||||
def train(self):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
|
||||
with torch.no_grad():
|
||||
q_target_next = self.target_q_net(experience.next_observation)
|
||||
tau_log_pi_next = self.tau_ln_pi(q_target_next)
|
||||
|
||||
q_k_targets = self.target_q_net(experience.observation)
|
||||
log_pi = self.tau_ln_pi(q_k_targets)
|
||||
|
||||
pi_target = F.softmax(q_target_next / self.temperature, dim=-1)
|
||||
q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1)
|
||||
|
||||
munchausen_addon = log_pi.gather(-1, experience.action)
|
||||
|
||||
munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0))
|
||||
|
||||
# Compute Q targets for current states
|
||||
m_q_target = munchausen_reward + q_target
|
||||
|
||||
# Get expected Q values from local model
|
||||
q_k = self.q_net(experience.observation)
|
||||
pred_q = q_k.gather(-1, experience.action)
|
||||
|
||||
# Compute loss
|
||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2))
|
||||
self._backprop_loss(loss)
|
144
algorithms/q_learner.py
Normal file
144
algorithms/q_learner.py
Normal file
@ -0,0 +1,144 @@
|
||||
from typing import Union
|
||||
import gym
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
from pathlib import Path
|
||||
import yaml
|
||||
from algorithms.common import BaseLearner, BaseBuffer, soft_update, Experience
|
||||
|
||||
|
||||
class QLearner(BaseLearner):
|
||||
def __init__(self, q_net, target_q_net, env, buffer_size=1e5, target_update=3000, eps_end=0.05, n_agents=1,
|
||||
gamma=0.99, train_every_n_steps=4, n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2,
|
||||
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0, eps_start=1):
|
||||
super(QLearner, self).__init__(env, n_agents, lr)
|
||||
self.q_net = q_net
|
||||
self.target_q_net = target_q_net
|
||||
self.target_q_net.eval()
|
||||
soft_update(self.q_net, self.target_q_net, tau=1.0)
|
||||
self.buffer = BaseBuffer(buffer_size)
|
||||
self.target_update = target_update
|
||||
self.eps = eps_start
|
||||
self.eps_start = eps_start
|
||||
self.eps_end = eps_end
|
||||
self.exploration_fraction = exploration_fraction
|
||||
self.batch_size = batch_size
|
||||
self.gamma = gamma
|
||||
self.train_every_n_steps = train_every_n_steps
|
||||
self.n_grad_steps = n_grad_steps
|
||||
self.tau = tau
|
||||
self.reg_weight = reg_weight
|
||||
self.weight_decay = weight_decay
|
||||
self.optimizer = torch.optim.AdamW(self.q_net.parameters(),
|
||||
lr=self.lr,
|
||||
weight_decay=self.weight_decay)
|
||||
self.max_grad_norm = max_grad_norm
|
||||
self.running_reward = deque(maxlen=5)
|
||||
self.running_loss = deque(maxlen=5)
|
||||
self.n_updates = 0
|
||||
|
||||
def save(self, path):
|
||||
path = Path(path) # no-op if already instance of Path
|
||||
path.mkdir(parents=True, exist_ok=True)
|
||||
hparams = {k: v for k, v in self.__dict__.items() if not(isinstance(v, BaseBuffer) or
|
||||
isinstance(v, torch.optim.Optimizer) or
|
||||
isinstance(v, gym.Env) or
|
||||
isinstance(v, nn.Module))
|
||||
}
|
||||
hparams.update({'class': self.__class__.__name__})
|
||||
with (path / 'hparams.yaml').open('w') as outfile:
|
||||
yaml.dump(hparams, outfile)
|
||||
torch.save(self.q_net, path / 'q_net.pt')
|
||||
|
||||
def anneal_eps(self, step, n_steps):
|
||||
fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0)
|
||||
self.eps = 1 + fraction * (self.eps_end - 1)
|
||||
|
||||
def get_action(self, obs) -> Union[int, np.ndarray]:
|
||||
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
|
||||
if np.random.rand() > self.eps:
|
||||
action = self.q_net.act(o.float())
|
||||
else:
|
||||
action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)])
|
||||
return action
|
||||
|
||||
def learn(self, n_steps):
|
||||
step = 0
|
||||
while step < n_steps:
|
||||
obs, done = self.env.reset(), False
|
||||
total_reward = 0
|
||||
while not done:
|
||||
|
||||
action = self.get_action(obs)
|
||||
|
||||
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
|
||||
|
||||
experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done) # do we really need to copy?
|
||||
self.buffer.add(experience)
|
||||
# end of step routine
|
||||
obs = next_obs
|
||||
step += 1
|
||||
total_reward += reward
|
||||
self.anneal_eps(step, n_steps)
|
||||
|
||||
if step % self.train_every_n_steps == 0:
|
||||
self.train()
|
||||
self.n_updates += 1
|
||||
if step % self.target_update == 0:
|
||||
print('UPDATE')
|
||||
soft_update(self.q_net, self.target_q_net, tau=self.tau)
|
||||
|
||||
self.running_reward.append(total_reward)
|
||||
if step % 10 == 0:
|
||||
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward):.2f}\t'
|
||||
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss):.4f}\tUpdates:{self.n_updates}')
|
||||
|
||||
def _training_routine(self, obs, next_obs, action):
|
||||
current_q_values = self.q_net(obs)
|
||||
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
|
||||
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
||||
return current_q_values, next_q_values_raw
|
||||
|
||||
def _backprop_loss(self, loss):
|
||||
# log loss
|
||||
self.running_loss.append(loss.item())
|
||||
# Optimize the model
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm)
|
||||
self.optimizer.step()
|
||||
|
||||
def train(self):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
pred_q, target_q_raw = self._training_routine(experience.observation,
|
||||
experience.next_observation,
|
||||
experience.action)
|
||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||
self._backprop_loss(loss)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
||||
from algorithms.common import BaseDDQN
|
||||
from algorithms.vdn_learner import VDNLearner
|
||||
|
||||
N_AGENTS = 1
|
||||
|
||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False)
|
||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||
|
||||
dqn, target_dqn = BaseDDQN(), BaseDDQN()
|
||||
learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||
train_every_n_steps=4, eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
|
||||
learner.learn(100000)
|
23
algorithms/vdn_learner.py
Normal file
23
algorithms/vdn_learner.py
Normal file
@ -0,0 +1,23 @@
|
||||
import torch
|
||||
from algorithms.q_learner import QLearner
|
||||
|
||||
|
||||
class VDNLearner(QLearner):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(VDNLearner, self).__init__(*args, **kwargs)
|
||||
assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead'
|
||||
|
||||
def train(self):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
|
||||
for agent_i in range(self.n_agents):
|
||||
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
|
||||
experience.next_observation[:, agent_i],
|
||||
experience.action[:, agent_i].unsqueeze(-1))
|
||||
pred_q += q_values
|
||||
target_q_raw += next_q_values_raw
|
||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||
self._backprop_loss(loss)
|
Loading…
x
Reference in New Issue
Block a user