This commit is contained in:
steffen-illium 2021-05-25 14:32:37 +02:00
parent 348c4bfecb
commit 3be9ce451d
5 changed files with 84 additions and 57 deletions

View File

@ -191,8 +191,7 @@ class BaseFactory(gym.Env):
def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
# Returns: Reward, Info
# Set to "raise NotImplementedError"
return 0, {}
raise NotImplementedError
def render(self):
raise NotImplementedError

View File

@ -112,7 +112,7 @@ class SimpleFactory(BaseFactory):
def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
# TODO: What reward to use?
current_dirt_amount = self.state[DIRT_INDEX].sum()
dirty_tiles = len(np.nonzero(self.state[DIRT_INDEX]))
dirty_tiles = np.argwhere(self.state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0]
try:
# penalty = current_dirt_amount
@ -128,7 +128,7 @@ class SimpleFactory(BaseFactory):
if agent_state.action_valid:
reward += 2
self.print(f'Agent {agent_state.i} did just clean up some dirt at {agent_state.pos}.')
self.monitor.add('dirt_cleaned', self._dirt_properties.clean_amount)
self.monitor.add('dirt_cleaned', 1)
else:
self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
f'at {agent_state.pos}, but was unsucsessfull.')

View File

@ -4,6 +4,8 @@ from collections import defaultdict
from stable_baselines3.common.callbacks import BaseCallback
from environments.logging.plotting import prepare_plot
class FactoryMonitor:
@ -58,11 +60,12 @@ class MonitorCallback(BaseCallback):
ext = 'png'
def __init__(self, env, filepath=Path('debug_out/monitor.pick')):
def __init__(self, env, filepath=Path('debug_out/monitor.pick'), plotting=True):
super(MonitorCallback, self).__init__()
self.filepath = Path(filepath)
self._monitor_list = list()
self.env = env
self.plotting = plotting
self.started = False
self.closed = False
@ -91,7 +94,18 @@ class MonitorCallback(BaseCallback):
# self.out_file.unlink(missing_ok=True)
with self.filepath.open('wb') as f:
pickle.dump(self.monitor_as_df_list, f, protocol=pickle.HIGHEST_PROTOCOL)
self.prepare_plot()
if self.plotting:
print('Monitor files were dumped to disk, now plotting....')
# %% Imports
import pandas as pd
# %% Load MonitorList from Disk
with self.filepath.open('rb') as f:
monitor_list = pickle.load(f)
result = pd.concat(monitor_list, sort=False)
# result.tail()
prepare_plot(filepath=self.filepath, results_df=result, tag='monitor')
print('Plotting done.')
self.closed = True
def _on_step(self) -> bool:
@ -99,50 +113,5 @@ class MonitorCallback(BaseCallback):
self._monitor_list.append(self.env.monitor)
else:
pass
return True
def plot(self, **kwargs):
from matplotlib import pyplot as plt
plt.rcParams.update(kwargs)
plt.tight_layout()
figure = plt.gcf()
plt.show()
figure.savefig(str(self.filepath.parent / f'{self.filepath.stem}_monitor_measures.{self.ext}'), format=self.ext)
def prepare_plot(self):
# %% Imports
import pandas as pd
import seaborn as sns
# %% Load MonitorList from Disk
with self.filepath.open('rb') as f:
monitor_list = pickle.load(f)
result = pd.concat(monitor_list, sort=False)
# result.tail()
# %%
lineplot = sns.lineplot(data=result)
lineplot.title.title = f'Lineplot Summary of {len(monitor_list)} Episodes'
# %%
sns.set_theme(palette='husl', style='whitegrid')
font_size = 16
tex_fonts = {
# Use LaTeX to write all text
"text.usetex": True,
"font.family": "serif",
# Use 10pt font in plots, to match 10pt font in document
"axes.labelsize": font_size,
"font.size": font_size,
# Make the legend/label fonts a little smaller
"legend.fontsize": font_size - 2,
"xtick.labelsize": font_size - 2,
"ytick.labelsize": font_size - 2
}
try:
self.plot(**tex_fonts)
except FileNotFoundError:
tex_fonts['text.usetex'] = False
self.plot(**tex_fonts)

View File

@ -0,0 +1,40 @@
import seaborn as sns
from matplotlib import pyplot as plt
def plot(filepath, ext='png', tag='monitor', **kwargs):
plt.rcParams.update(kwargs)
plt.tight_layout()
figure = plt.gcf()
plt.show()
figure.savefig(str(filepath.parent / f'{filepath.stem}_{tag}_measures.{ext}'), format=ext)
def prepare_plot(filepath, results_df, ext='png', tag=''):
# %%
_ = sns.lineplot(data=results_df)
# %%
sns.set_theme(palette='husl', style='whitegrid')
font_size = 16
tex_fonts = {
# Use LaTeX to write all text
"text.usetex": False,
"font.family": "serif",
# Use 10pt font in plots, to match 10pt font in document
"axes.labelsize": font_size,
"font.size": font_size,
# Make the legend/label fonts a little smaller
"legend.fontsize": font_size - 2,
"xtick.labelsize": font_size - 2,
"ytick.labelsize": font_size - 2
}
try:
plot(filepath, ext=ext, tag=tag, **tex_fonts)
except (FileNotFoundError, RuntimeError):
tex_fonts['text.usetex'] = False
plot(filepath, ext=ext, tag=tag, **tex_fonts)

View File

@ -1,35 +1,54 @@
from collections import defaultdict
from pathlib import Path
import numpy as np
import pandas as pd
from stable_baselines3.common.callbacks import BaseCallback
from environments.logging.plotting import prepare_plot
class TraningMonitor(BaseCallback):
def __init__(self, filepath, flush_interval=None):
super(TraningMonitor, self).__init__()
self.values = dict()
self.values = defaultdict(dict)
self.rewards = defaultdict(lambda: 0)
self.filepath = Path(filepath)
self.flush_interval = flush_interval
self.next_flush: int
pass
def _on_training_start(self) -> None:
self.flush_interval = self.flush_interval or (self.locals['total_timesteps'] * 0.1)
self.next_flush = self.flush_interval
def _flush(self):
df = pd.DataFrame.from_dict(self.values)
df = pd.DataFrame.from_dict(self.values, orient='index')
if not self.filepath.exists():
df.to_csv(self.filepath, mode='wb', header=True)
else:
df.to_csv(self.filepath, mode='a', header=False)
self.values = dict()
def _on_step(self) -> bool:
self.values[self.num_timesteps] = dict(reward=self.locals['rewards'].item())
if self.num_timesteps % self.flush_interval == 0:
for idx, done in np.ndenumerate(self.locals['dones']):
idx = idx[0]
# self.values[self.num_timesteps].update(**{f'reward_env_{idx}': self.locals['rewards'][idx]})
self.rewards[idx] += self.locals['rewards'][idx]
if done:
self.values[self.num_timesteps].update(**{f'acc_epispde_r_env_{idx}': self.rewards[idx]})
self.rewards[idx] = 0
if self.num_timesteps >= self.next_flush and self.values:
self._flush()
self.values = defaultdict(dict)
self.next_flush += self.flush_interval
return True
def on_training_end(self) -> None:
self._flush()
self.values = defaultdict(dict)
# prepare_plot()