plotting
This commit is contained in:
parent
348c4bfecb
commit
3be9ce451d
@ -191,8 +191,7 @@ class BaseFactory(gym.Env):
|
||||
|
||||
def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
|
||||
# Returns: Reward, Info
|
||||
# Set to "raise NotImplementedError"
|
||||
return 0, {}
|
||||
raise NotImplementedError
|
||||
|
||||
def render(self):
|
||||
raise NotImplementedError
|
||||
|
@ -112,7 +112,7 @@ class SimpleFactory(BaseFactory):
|
||||
def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
|
||||
# TODO: What reward to use?
|
||||
current_dirt_amount = self.state[DIRT_INDEX].sum()
|
||||
dirty_tiles = len(np.nonzero(self.state[DIRT_INDEX]))
|
||||
dirty_tiles = np.argwhere(self.state[DIRT_INDEX] != h.IS_FREE_CELL).shape[0]
|
||||
|
||||
try:
|
||||
# penalty = current_dirt_amount
|
||||
@ -128,7 +128,7 @@ class SimpleFactory(BaseFactory):
|
||||
if agent_state.action_valid:
|
||||
reward += 2
|
||||
self.print(f'Agent {agent_state.i} did just clean up some dirt at {agent_state.pos}.')
|
||||
self.monitor.add('dirt_cleaned', self._dirt_properties.clean_amount)
|
||||
self.monitor.add('dirt_cleaned', 1)
|
||||
else:
|
||||
self.print(f'Agent {agent_state.i} just tried to clean up some dirt '
|
||||
f'at {agent_state.pos}, but was unsucsessfull.')
|
||||
|
@ -4,6 +4,8 @@ from collections import defaultdict
|
||||
|
||||
from stable_baselines3.common.callbacks import BaseCallback
|
||||
|
||||
from environments.logging.plotting import prepare_plot
|
||||
|
||||
|
||||
class FactoryMonitor:
|
||||
|
||||
@ -58,11 +60,12 @@ class MonitorCallback(BaseCallback):
|
||||
|
||||
ext = 'png'
|
||||
|
||||
def __init__(self, env, filepath=Path('debug_out/monitor.pick')):
|
||||
def __init__(self, env, filepath=Path('debug_out/monitor.pick'), plotting=True):
|
||||
super(MonitorCallback, self).__init__()
|
||||
self.filepath = Path(filepath)
|
||||
self._monitor_list = list()
|
||||
self.env = env
|
||||
self.plotting = plotting
|
||||
self.started = False
|
||||
self.closed = False
|
||||
|
||||
@ -91,7 +94,18 @@ class MonitorCallback(BaseCallback):
|
||||
# self.out_file.unlink(missing_ok=True)
|
||||
with self.filepath.open('wb') as f:
|
||||
pickle.dump(self.monitor_as_df_list, f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
self.prepare_plot()
|
||||
if self.plotting:
|
||||
print('Monitor files were dumped to disk, now plotting....')
|
||||
# %% Imports
|
||||
import pandas as pd
|
||||
# %% Load MonitorList from Disk
|
||||
with self.filepath.open('rb') as f:
|
||||
monitor_list = pickle.load(f)
|
||||
|
||||
result = pd.concat(monitor_list, sort=False)
|
||||
# result.tail()
|
||||
prepare_plot(filepath=self.filepath, results_df=result, tag='monitor')
|
||||
print('Plotting done.')
|
||||
self.closed = True
|
||||
|
||||
def _on_step(self) -> bool:
|
||||
@ -99,50 +113,5 @@ class MonitorCallback(BaseCallback):
|
||||
self._monitor_list.append(self.env.monitor)
|
||||
else:
|
||||
pass
|
||||
return True
|
||||
|
||||
def plot(self, **kwargs):
|
||||
from matplotlib import pyplot as plt
|
||||
plt.rcParams.update(kwargs)
|
||||
|
||||
plt.tight_layout()
|
||||
figure = plt.gcf()
|
||||
plt.show()
|
||||
figure.savefig(str(self.filepath.parent / f'{self.filepath.stem}_monitor_measures.{self.ext}'), format=self.ext)
|
||||
|
||||
def prepare_plot(self):
|
||||
# %% Imports
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
|
||||
# %% Load MonitorList from Disk
|
||||
with self.filepath.open('rb') as f:
|
||||
monitor_list = pickle.load(f)
|
||||
|
||||
result = pd.concat(monitor_list, sort=False)
|
||||
# result.tail()
|
||||
|
||||
# %%
|
||||
lineplot = sns.lineplot(data=result)
|
||||
lineplot.title.title = f'Lineplot Summary of {len(monitor_list)} Episodes'
|
||||
|
||||
# %%
|
||||
sns.set_theme(palette='husl', style='whitegrid')
|
||||
font_size = 16
|
||||
tex_fonts = {
|
||||
# Use LaTeX to write all text
|
||||
"text.usetex": True,
|
||||
"font.family": "serif",
|
||||
# Use 10pt font in plots, to match 10pt font in document
|
||||
"axes.labelsize": font_size,
|
||||
"font.size": font_size,
|
||||
# Make the legend/label fonts a little smaller
|
||||
"legend.fontsize": font_size - 2,
|
||||
"xtick.labelsize": font_size - 2,
|
||||
"ytick.labelsize": font_size - 2
|
||||
}
|
||||
|
||||
try:
|
||||
self.plot(**tex_fonts)
|
||||
except FileNotFoundError:
|
||||
tex_fonts['text.usetex'] = False
|
||||
self.plot(**tex_fonts)
|
||||
|
40
environments/logging/plotting.py
Normal file
40
environments/logging/plotting.py
Normal file
@ -0,0 +1,40 @@
|
||||
import seaborn as sns
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
def plot(filepath, ext='png', tag='monitor', **kwargs):
|
||||
plt.rcParams.update(kwargs)
|
||||
|
||||
plt.tight_layout()
|
||||
figure = plt.gcf()
|
||||
plt.show()
|
||||
figure.savefig(str(filepath.parent / f'{filepath.stem}_{tag}_measures.{ext}'), format=ext)
|
||||
|
||||
|
||||
def prepare_plot(filepath, results_df, ext='png', tag=''):
|
||||
# %%
|
||||
|
||||
_ = sns.lineplot(data=results_df)
|
||||
|
||||
# %%
|
||||
sns.set_theme(palette='husl', style='whitegrid')
|
||||
font_size = 16
|
||||
tex_fonts = {
|
||||
# Use LaTeX to write all text
|
||||
"text.usetex": False,
|
||||
"font.family": "serif",
|
||||
# Use 10pt font in plots, to match 10pt font in document
|
||||
"axes.labelsize": font_size,
|
||||
"font.size": font_size,
|
||||
# Make the legend/label fonts a little smaller
|
||||
"legend.fontsize": font_size - 2,
|
||||
"xtick.labelsize": font_size - 2,
|
||||
"ytick.labelsize": font_size - 2
|
||||
}
|
||||
|
||||
try:
|
||||
plot(filepath, ext=ext, tag=tag, **tex_fonts)
|
||||
except (FileNotFoundError, RuntimeError):
|
||||
tex_fonts['text.usetex'] = False
|
||||
plot(filepath, ext=ext, tag=tag, **tex_fonts)
|
@ -1,35 +1,54 @@
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from stable_baselines3.common.callbacks import BaseCallback
|
||||
|
||||
from environments.logging.plotting import prepare_plot
|
||||
|
||||
|
||||
class TraningMonitor(BaseCallback):
|
||||
|
||||
def __init__(self, filepath, flush_interval=None):
|
||||
super(TraningMonitor, self).__init__()
|
||||
self.values = dict()
|
||||
self.values = defaultdict(dict)
|
||||
self.rewards = defaultdict(lambda: 0)
|
||||
|
||||
self.filepath = Path(filepath)
|
||||
self.flush_interval = flush_interval
|
||||
self.next_flush: int
|
||||
pass
|
||||
|
||||
def _on_training_start(self) -> None:
|
||||
self.flush_interval = self.flush_interval or (self.locals['total_timesteps'] * 0.1)
|
||||
self.next_flush = self.flush_interval
|
||||
|
||||
def _flush(self):
|
||||
df = pd.DataFrame.from_dict(self.values)
|
||||
df = pd.DataFrame.from_dict(self.values, orient='index')
|
||||
if not self.filepath.exists():
|
||||
df.to_csv(self.filepath, mode='wb', header=True)
|
||||
else:
|
||||
df.to_csv(self.filepath, mode='a', header=False)
|
||||
self.values = dict()
|
||||
|
||||
def _on_step(self) -> bool:
|
||||
self.values[self.num_timesteps] = dict(reward=self.locals['rewards'].item())
|
||||
if self.num_timesteps % self.flush_interval == 0:
|
||||
for idx, done in np.ndenumerate(self.locals['dones']):
|
||||
idx = idx[0]
|
||||
# self.values[self.num_timesteps].update(**{f'reward_env_{idx}': self.locals['rewards'][idx]})
|
||||
self.rewards[idx] += self.locals['rewards'][idx]
|
||||
if done:
|
||||
self.values[self.num_timesteps].update(**{f'acc_epispde_r_env_{idx}': self.rewards[idx]})
|
||||
self.rewards[idx] = 0
|
||||
|
||||
if self.num_timesteps >= self.next_flush and self.values:
|
||||
self._flush()
|
||||
self.values = defaultdict(dict)
|
||||
|
||||
self.next_flush += self.flush_interval
|
||||
return True
|
||||
|
||||
def on_training_end(self) -> None:
|
||||
self._flush()
|
||||
self.values = defaultdict(dict)
|
||||
# prepare_plot()
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user