Debugging

This commit is contained in:
Steffen Illium
2022-01-11 10:54:02 +01:00
parent 435056f373
commit 3150757347
6 changed files with 67 additions and 58 deletions

View File

@ -1,7 +1,6 @@
import sys
from pathlib import Path
from matplotlib import pyplot as plt
import numpy as np
import itertools as it
try:
@ -16,8 +15,6 @@ except NameError:
DIR = None
pass
import time
import simplejson
from stable_baselines3.common.vec_env import SubprocVecEnv
@ -28,14 +25,12 @@ from environments.factory.factory_item import ItemProperties, ItemFactory
from environments.logging.envmonitor import EnvMonitor
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
import pickle
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
from plotting.compare_runs import compare_seed_runs, compare_model_runs
import pandas as pd
import seaborn as sns
import multiprocessing as mp
# mp.set_start_method("spawn")
"""
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
but never saw each other in training.
@ -72,10 +67,9 @@ n_agents = 4
ood_monitor_file = f'e_1_{n_agents}_agents'
baseline_monitor_file = 'e_1_baseline'
from stable_baselines3 import A2C
def policy_model_kwargs():
return dict() # gae_lambda=0.25, n_steps=16, max_grad_norm=0.25, use_rms_prop=True)
return dict() # gae_lambda=0.25, n_steps=16, max_grad_norm=0.25, use_rms_prop=True)
def dqn_model_kwargs():
@ -198,7 +192,7 @@ if __name__ == '__main__':
ood_run = True
plotting = True
train_steps = 1e7
train_steps = 1e6
n_seeds = 3
frames_to_stack = 3
@ -222,7 +216,7 @@ if __name__ == '__main__':
max_spawn_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
dirt_smear_amount=0.0, agent_can_interact=True)
item_props = ItemProperties(n_items=10, agent_can_interact=True,
item_props = ItemProperties(n_items=10,
spawn_frequency=30, n_drop_off_locations=2,
max_agent_inventory_capacity=15)
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,