Steffen Illium 3150757347 Debugging
2022-01-11 10:54:02 +01:00

526 lines
23 KiB
Python

import sys
from pathlib import Path
from matplotlib import pyplot as plt
import itertools as it
try:
# noinspection PyUnboundLocalVariable
if __package__ is None:
DIR = Path(__file__).resolve().parent
sys.path.insert(0, str(DIR.parent))
__package__ = DIR.name
else:
DIR = None
except NameError:
DIR = None
pass
import simplejson
from stable_baselines3.common.vec_env import SubprocVecEnv
from environments import helpers as h
from environments.factory.factory_dirt import DirtProperties, DirtFactory
from environments.factory.combined_factories import DirtItemFactory
from environments.factory.factory_item import ItemProperties, ItemFactory
from environments.logging.envmonitor import EnvMonitor
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
import pickle
from plotting.compare_runs import compare_seed_runs, compare_model_runs
import pandas as pd
import seaborn as sns
import multiprocessing as mp
"""
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
but never saw each other in training.
Those agents learned
We start with training a single policy on a single task (dirt cleanup / item pickup).
Then multiple agent equipped with the same policy are deployed in the same environment.
There are further distinctions to be made:
1. No Observation - ['no_obs']:
- Agent do not see each other but their consequences of their combined actions
- Agents can collide
2. Observation in seperate slice - [['seperate_0'], ['seperate_1'], ['seperate_N']]:
- Agents see other entitys on a seperate slice
- This slice has been filled with $0 | 1 | \mathbb{N}(0, 1)$
-- Depending ob the fill value, agents will react diffently
-> TODO: Test this!
3. Observation in level slice - ['in_lvl_obs']:
- This tells the agent to treat other agents as obstacle.
- However, the state space is altered since moving obstacles are not part the original agent observation.
- We are out of distribution.
4. Obseration (similiar to camera read out) ['in_lvl_0.5', 'in_lvl_n']
- This tells the agent to treat other agents as obstacle, but "sees" them encoded as a different value.
- However, the state space is altered since moving obstacles are not part the original agent observation.
- We are out of distribution.
"""
n_agents = 4
ood_monitor_file = f'e_1_{n_agents}_agents'
baseline_monitor_file = 'e_1_baseline'
def policy_model_kwargs():
return dict() # gae_lambda=0.25, n_steps=16, max_grad_norm=0.25, use_rms_prop=True)
def dqn_model_kwargs():
return dict(buffer_size=50000,
learning_starts=64,
batch_size=64,
target_update_interval=5000,
exploration_fraction=0.25,
exploration_final_eps=0.025
)
def encapsule_env_factory(env_fctry, env_kwrgs):
def _init():
with env_fctry(**env_kwrgs) as init_env:
return init_env
return _init
def load_model_run_baseline(seed_path, env_to_run):
# retrieve model class
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name)
# Load both agents
model = model_cls.load(seed_path / 'model.zip', device='cpu')
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(done_at_collision=True)
# Init Env
with env_to_run(**env_kwargs) as env_factory:
monitored_env_factory = EnvMonitor(env_factory)
# Evaluation Loop for i in range(n Episodes)
for episode in range(100):
env_state = monitored_env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
action = model.predict(env_state, deterministic=True)[0]
env_state, step_r, done_bool, info_obj = monitored_env_factory.step(action)
rew += step_r
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
monitored_env_factory.save_run(filepath=seed_path / f'{baseline_monitor_file}.pick')
def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
global model_cls
# retrieve model class
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name)
# Load both agents
models = [model_cls.load(seed_path / 'model.zip', device='cpu') for _ in range(n_agents)]
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(
n_agents=n_agents,
done_at_collision=True,
**additional_kwargs_dict.get('post_training_kwargs', {}))
# Init Env
with env_to_run(**env_kwargs) as env_factory:
monitored_factory_env = EnvMonitor(env_factory)
# Evaluation Loop for i in range(n Episodes)
for episode in range(50):
env_state = monitored_factory_env.reset()
rew, done_bool = 0, False
while not done_bool:
try:
actions = [model.predict(env_state[model_idx], deterministic=True)[0]
for model_idx, model in enumerate(models)]
except ValueError as e:
print(e)
print('Env_Kwargs are:\n')
print(env_kwargs)
print('Path is:\n')
print(seed_path)
exit()
env_state, step_r, done_bool, info_obj = monitored_factory_env.step(actions)
rew += step_r
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
monitored_factory_env.save_run(filepath=seed_path / f'{ood_monitor_file}.pick')
# Eval monitor outputs are automatically stored by the monitor object
del models, env_kwargs, env_factory
import gc
gc.collect()
def start_mp_study_run(envs_map, policies_path):
paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / f'{ood_monitor_file}.pick').exists())
if paths:
with mp.get_context("spawn").Pool(mp.cpu_count()) as pool:
print("Starting MP with: ", pool._processes, " Processes")
_ = pool.starmap(load_model_run_study,
it.product(paths,
(envs_map[policies_path.parent.name][0],),
(observation_modes[policies_path.parent.parent.name],))
)
def start_mp_baseline_run(envs_map, policies_path):
paths = list(y for y in policies_path.iterdir() if y.is_dir() and
not (y / f'{baseline_monitor_file}.pick').exists())
if paths:
with mp.get_context("spawn").Pool(mp.cpu_count()) as pool:
print("Starting MP with: ", pool._processes, " Processes")
_ = pool.starmap(load_model_run_baseline,
it.product(paths,
(envs_map[policies_path.parent.name][0],))
)
if __name__ == '__main__':
# What to do:
train = True
baseline_run = True
ood_run = True
plotting = True
train_steps = 1e6
n_seeds = 3
frames_to_stack = 3
# Define a global studi save path
start_time = 'new_reward' # int(time.time())
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
# Define Global Env Parameters
# Define properties object parameters
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
omit_agent_self=True,
additional_agent_placeholder=None,
frames_to_stack=frames_to_stack,
pomdp_r=2
)
move_props = MovementProperties(allow_diagonal_movement=True,
allow_square_movement=True,
allow_no_op=False)
dirt_props = DirtProperties(initial_dirt_ratio=0.35, initial_dirt_spawn_r_var=0.1,
clean_amount=0.34,
max_spawn_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
dirt_smear_amount=0.0, agent_can_interact=True)
item_props = ItemProperties(n_items=10,
spawn_frequency=30, n_drop_off_locations=2,
max_agent_inventory_capacity=15)
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,
level_name='rooms', doors_have_area=True,
verbose=False,
mv_prop=move_props,
obs_prop=obs_props,
done_at_collision=True
)
# Bundle both environments with global kwargs and parameters
env_map = {}
env_map.update({'dirt': (DirtFactory, dict(dirt_prop=dirt_props,
**factory_kwargs.copy()))})
if False:
env_map.update({'item': (ItemFactory, dict(item_prop=item_props,
**factory_kwargs.copy()))})
env_map.update({'itemdirt': (DirtItemFactory, dict(dirt_prop=dirt_props, item_prop=item_props,
**factory_kwargs.copy()))})
env_names = list(env_map.keys())
# Define parameter versions according with #1,2[1,0,N],3
observation_modes = {}
if False:
observation_modes.update({
'seperate_1': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=1,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_0': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=0,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_N': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder='N',
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
)
)})
observation_modes.update({
'in_lvl_obs': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.LEVEL,
omit_agent_self=True,
additional_agent_placeholder=None,
frames_to_stack=frames_to_stack,
pomdp_r=2)
)
)})
observation_modes.update({
# No further adjustment needed
'no_obs': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=2)
)
)
})
# Train starts here ############################################################
# Build Major Loop parameters, parameter versions, Env Classes and models
if train:
for obs_mode in observation_modes.keys():
for env_name in env_names:
for model_cls in [h.MODEL_MAP['A2C']]:
# Create an identifier, which is unique for every combination and easy to read in filesystem
identifier = f'{model_cls.__name__}_{start_time}'
# Train each combination per seed
combination_path = study_root_path / obs_mode / env_name / identifier
env_class, env_kwargs = env_map[env_name]
env_kwargs = env_kwargs.copy()
# Retrieve and set the observation mode specific env parameters
additional_kwargs = observation_modes.get(obs_mode, {}).get("additional_env_kwargs", {})
env_kwargs.update(additional_kwargs)
for seed in range(n_seeds):
env_kwargs.update(env_seed=seed)
# Output folder
seed_path = combination_path / f'{str(seed)}_{identifier}'
if (seed_path / 'monitor.pick').exists():
continue
seed_path.mkdir(parents=True, exist_ok=True)
# Env Init & Model kwargs definition
if model_cls.__name__ in ["PPO", "A2C"]:
# env_factory = env_class(**env_kwargs)
env_factory = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs)
for _ in range(6)], start_method="spawn")
model_kwargs = policy_model_kwargs()
elif model_cls.__name__ in ["RegDQN", "DQN", "QRDQN"]:
with env_class(**env_kwargs) as env_factory:
model_kwargs = dqn_model_kwargs()
else:
raise NameError(f'The model "{model_cls.__name__}" has the wrong name.')
param_path = seed_path / f'env_params.json'
try:
env_factory.env_method('save_params', param_path)
except AttributeError:
env_factory.save_params(param_path)
# EnvMonitor Init
callbacks = [EnvMonitor(env_factory)]
# Model Init
model = model_cls("MlpPolicy", env_factory,
verbose=1, seed=seed, device='cpu',
**model_kwargs)
# Model train
model.learn(total_timesteps=int(train_steps), callback=callbacks)
# Model save
save_path = seed_path / f'model.zip'
model.save(save_path)
# Monitor Save
callbacks[0].save_run(seed_path / 'monitor.pick')
# Better be save then sorry: Clean up!
del env_factory, model
import gc
gc.collect()
# Compare performance runs, for each seed within a model
try:
compare_seed_runs(combination_path, use_tex=False)
except ValueError:
pass
# Better be save then sorry: Clean up!
try:
del env_kwargs
del model_kwargs
import gc
gc.collect()
except NameError:
pass
# Compare performance runs, for each model
# FIXME: Check THIS!!!!
try:
compare_model_runs(study_root_path / obs_mode / env_name, f'{start_time}', 'step_reward',
use_tex=False)
except ValueError:
pass
pass
pass
pass
pass
# Train ends here ############################################################
# Evaluation starts here #####################################################
# First Iterate over every model and monitor "as trained"
if baseline_run:
print('Start Baseline Tracking')
for obs_mode in observation_modes:
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == obs_mode)
# For trained policy in study_root_path / identifier
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
# Iteration
start_mp_baseline_run(env_map, policy_path)
# for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_baseline(policy_path)
print('Baseline Tracking done')
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
if ood_run:
print('Start OOD Tracking')
for obs_mode in observation_modes:
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == obs_mode)
# For trained policy in study_root_path / identifier
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
# FIXME: Pick random seed or iterate over available seeds
# First seed path version
# policy_path = next((y for y in policy_path.iterdir() if y.is_dir()))
# Iteration
start_mp_study_run(env_map, policy_path)
#for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_study(policy_path, env_map[env_path.name][0], observation_modes[obs_mode])
print('OOD Tracking Done')
# Plotting
if plotting:
# TODO: Plotting
print('Start Plotting')
df_list = list()
for observation_folder in (x for x in study_root_path.iterdir() if x.is_dir()):
for env_folder in (x for x in observation_folder.iterdir() if x.is_dir()):
for model_folder in (x for x in env_folder.iterdir() if x.is_dir()):
# Gather per seed results in this list
for seed_folder in (x for x in model_folder.iterdir() if x.is_dir()):
for monitor_file in [f'{baseline_monitor_file}.pick', f'{ood_monitor_file}.pick']:
with (seed_folder / monitor_file).open('rb') as f:
monitor_df = pickle.load(f)
monitor_df = monitor_df.fillna(0)
monitor_df['seed'] = int(seed_folder.name.split('_')[0])
monitor_df['monitor'] = monitor_file.split('.')[0]
monitor_df['monitor'] = monitor_df['monitor'].astype(str)
monitor_df['env'] = env_folder.name
monitor_df['obs_mode'] = observation_folder.name
monitor_df['obs_mode'] = monitor_df['obs_mode'].astype(str)
monitor_df['model'] = model_folder.name.split('_')[0]
df_list.append(monitor_df)
id_cols = ['monitor', 'env', 'obs_mode', 'model']
df = pd.concat(df_list, ignore_index=True)
df = df.fillna(0)
for env_name in env_names:
for id_col in id_cols:
df[id_col] = df[id_col].astype(str)
if True:
# df['fail_sum'] = df.loc[:, df.columns.str.contains("failed")].sum(1)
df['pick_up'] = df.loc[:, df.columns.str.contains("]_item_pickup")].sum(1)
df['drop_off'] = df.loc[:, df.columns.str.contains("]_item_dropoff")].sum(1)
df['failed_item_action'] = df.loc[:, df.columns.str.contains("]_failed_item_action")].sum(1)
df['failed_cleanup'] = df.loc[:, df.columns.str.contains("]_failed_dirt_cleanup")].sum(1)
df['coll_lvl'] = df.loc[:, df.columns.str.contains("]_vs_LEVEL")].sum(1)
df['coll_agent'] = df.loc[:, df.columns.str.contains("]_vs_Agent")].sum(1) / 2
# df['`collis`ions'] = df['coll_lvl'] + df['coll_agent']
value_vars = ['pick_up', 'drop_off', 'failed_item_action', 'failed_cleanup',
'coll_lvl', 'coll_agent', 'dirt_cleaned']
df_grouped = df.groupby(id_cols + ['seed']
# 'sum' if "agent" in key else 'mean'
).agg({key: 'sum' for key in df.columns
if key not in (id_cols + ['seed'])})
df_melted = df_grouped.reset_index().melt(id_vars=id_cols,
value_vars=value_vars, # 'step_reward',
var_name="Measurement",
value_name="Score")
# df_melted["Measurements"] = df_melted["Measurement"] + " " + df_melted["monitor"]
# Plotting
fig, ax = plt.subplots(figsize=(11.7, 8.27))
c = sns.catplot(data=df_melted[df_melted['env'] == env_name],
x='Measurement', hue='monitor', row='model', col='obs_mode', y='Score',
sharey=True, kind="box", height=4, aspect=.7, legend_out=False, legend=False,
showfliers=False)
c.set_xticklabels(rotation=65, horizontalalignment='right')
# c.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
c.fig.suptitle(f"Cat plot for {env_name}")
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.tight_layout()
plt.savefig(study_root_path / f'results_{n_agents}_agents_{env_name}.png')
pass