
Constructing Organism Networks from
Collaborative Self-Replicators

Steffen Illium, Maximilian Zorn, Cristian Lenta,
Michael Kölle, Claudia Linnhoff-Popien, Thomas Gabor

Institute of Informatics, LMU Munich
steffen.illium@ifi.lmu.de

Abstract—We introduce organism networks, which function like
a single neural network but are composed of several neural particle
networks; while each particle network fulfils the role of a single
weight application within the organism network, it is also trained
to self-replicate its own weights. As organism networks feature
vastly more parameters than simpler architectures, we perform
our initial experiments on an arithmetic task as well as on
simplified MNIST-dataset classification as a collective. We observe
that individual particle networks tend to specialise in either of
the tasks and that the ones fully specialised in the secondary
task may be dropped from the network without hindering the
computational accuracy of the primary task. This leads to the
discovery of a novel pruning-strategy for sparse neural networks.

I. INTRODUCTION

Self-replication (SR) has always been regarded one of the
central aspects of life [1]. Recent literature has shown spiking
interest in enabling neural networks (NNs) to self-replicate (cf.
[2]–[4]), mostly for the pure reason of creating more lifelike
entities from NNs, which are currently the most prominent
tools to encode complex behaviour in a way that is easily
accessible to machine learning. Eventually, one may hope
to lift some limitations imposed by current neural network
architectures via means of self-replication (SR) to decrease
volatility in the training process or to create new means of
information interchange between such networks.

Instances of self-replicating neural networks (SRNNs) have
already been given additional tasks that are more directly
useful to the system’s designer than pure SR — a kind of
ultimate purpose (cf. [2], [4], [5]). However, in all of these
instances, an SRNN is expected to perform said task on its
own or only with indirect support from other networks during
training [5]. Furthermore, the tasks visited by Gabor et al. [5]
can be described as very basic arithmetic operations.

Therefore, in this study, we built upon the work by Gabor et
al. [5] in establishing singular self-replicating neural networks
as members of a group of many networks that collaborate
on learning to solve a joint auxilary task (AT). Effectively,
we define a structure we call an organism network (ON),
which looks like any other neural network from the outside
but on the inside is composed of various other NNs we call
particle networks (PNs). While each individual of these PNs
is trained to self-replicate, the whole ON is trained to perform
a ‘meaningful’ (auxiliary) task (like the simple addition of
numbers or the classification of images). Thus, we push the

metaphor of self-replicating NNs one step further by having
them behave in an (at least more) similar way to cells in
multicellular biological specimen.

As the parameter space of the complete organism network
with all its PNs grows to large dimensions, we consider show-
ing the feasibility of training such a structure to meaningful
and useful behaviour as one main contribution of this paper,
even though organism networks cannot quite compete with
standard approaches for training efficiency on their collabo-
rative auxilary task yet. Most interestingly, we observe that,
with a simpler problem like float addition, all PNs can be
trained to be self-replicators while performing the AT; a more
complicated task like classification of images in the MNIST-
dataset (MNIST), however, gives rise to fully autonomous
specialisation within the PNs. This means that certain PNs
tend to focus on SR while others focus on the auxilary
task. Our experiments suggest that, when pruning these PNs
from a comparable sized NN, we can still retain almost all
the organism network’s external function (AT). As a novel
finding, we also observe better performance in comparison to
a comparable network pruned by a global unstructured ‘l1-
pruning’ method.

The structure is as follows: We present a brief recap of
relevant background in the field of self-replicating neural
network in Section II, before proposing the concept and
architecture of organism networks in Section III. Experiments
with two different auxilary tasks of increasing difficulty and
the investigation of resulting performances can be found
in Sections IV & V. Finally, we discuss related work in
Section VI and conclude our findings in Section VII.

II. SELF-REPLICATING NETWORKS

We follow Gabor et al. [3] in the definition of self-
replicating neural networks, of which we sum up shortly all
relevant and adopted material. We will also briefly define
our approach and notation for the underlying neural network
basics.

Definition 1 (neural network): A neural network is a func-
tion N : Rp → Rq with p inputs and q outputs. This function
is defined via a graph made up of r layers L1, ..., Lr where
each layer Ll consists of |Ll| cells C1, ..., C|Ll|, which make
up the graph’s vertices, and each cell Cl,c of the layer Ll is
connected to all cells of the previous layer, i.e., Cl−1,d for

ar
X

iv
:2

21
2.

10
07

8v
2

 [
cs

.N
E

]
 2

7
Fe

b
20

23

d = 1, ..., |Ll−1|, via the graph’s edges. Each edge of a cell
Cl,c is assigned an edge weight El,c,e ∈ R, e = 1, ..., |Ll−1|.
Given a fixed graph structure, the vector of all edge weights
w = N = 〈El,c,e〉l=1,...,r,c=1,...,|Ll|,e=1,...,|Ll−1| defines the
network’s functionality.

A network’s output given an input x ∈ Rp is given via
y = N (x) = 〈O(r, c)〉c=1,...,|Lr| ∈ Rq where

O(l, c) =

{
xc if l = 0,∑|Ll−1|

i=1 El,c,i ·O(l − 1, c) otherwise.

Note that Definition 1 is not the most general way to define
neural networks and especially our definition of O already
imposes linear activation as we use it for the basic SRNNs
in this paper. Further note that during all experiments, the
network architecture remains fixed so that we can deduce
a network’s function using only its weight vector. To better
understand the internal structure of a neural network and how
the function is derived from architecture and weights, please
refer to Lecun et al. [6] or the definitions by Gabor et al. [3],
which match our formalism.

To allow for SR on a formal level, we need to define the NN
in a way so that it can process all of its own weights. As the
weight vector of an arbitrary network always contains at least
as many weights as its input and output dimensions combined,
it is rather difficult to implement a neural network that can
process all its own parameters in a single activation step. As
discussed by Gabor et al. [3], it is possible to pass every weight
parameter to the network one by one alongside with some
meta-data regarding the weight parameter’s position within the
network (w.r.t. to layer, neuron, weight), which enables the NN
to process a vector as large as its own weight vector via several
iterations. We adopt this so called weightwise reduction [3]
for our research, which also allows for interactions between
particles in future experiments.

An application of one network reduced in this way onto
another network (or itself) is defined as follows:

Definition 2 (weightwise application): LetM,N ,O : R4 →
R be neural networks. Let the weights of M be M =
〈vi〉0≤i<|M|. A neural network O is the result of weightwise
application of N onto M, written O = N CwwM, iff

O = 〈N (vi, L(i), C(i), E(i))〉0≤i<|M|
where L(i) is the layer of the weight i, C(i) is the cell the
weight i leads into and E(i) is the positional number of edge
weight i among the weights of its cell.

Gabor et al. [3] define SR as a network’s ability to reproduce
its own weights via weightwise application on itself (weight-
wise self-application). In other words, fed with a single weight
value and a corresponding positional encoding, the network
learns a mapping to reliably reproduce each weight. Since
floating-point mathematics is imprecise in today’s computers,
we expect the weights to not be reproduced exactly but only
within an ε distance. Once a neural network can achieve
sufficiently precise self-replication (SR), it is called an ε-
fixpoint.

Definition 3 (ε-fixpoint): Given a neural network N with
weights N = 〈vi〉0≤i<|N |. Let ε ∈ R be the error margin
of the fixpoint property. Let N ′ = N Cww N be the self-
application of N with weights N ′ = 〈wi〉0≤i<|N ′|. We call
N an ε-fixpoint or a fixpoint up to ε iff for all i it holds that
|wi − vi| < ε.

In most applications of artificial intelligence, the weights
for neural networks are generated via training.

Definition 4 (training): Given a training data set D =
{(Xi, Yi) | 0 ≤ i < |D|} with data points consisting of an
input Xi and a desired output Yi. We train a network N on D
when we create a new network N ′ with adjusted weights N ′
so to minimize the loss

∑|D|−1
i=0 |N ′(Xi)−Yi| compared to N .

This update of weights is written as N ′ = N (X0, Y0)
... (X|D|−1, Y|D|−1) or shorter N ′ = N D.

Training of Feed-Forward Neural Networks (FF NN), is
usually performed via backpropagation (BP, cf. [7]). When
training self-replicating NNs by BP, we can define a weight-
wise training operator ww as follows:

Definition 5 (weightwise training): Given neural networks
M,N ,O with M = 〈vi〉0≤i<|M|. A neural network O is
the result of weightwise training of N for M, written O =
N ww M, iff

O = N {((vi, L(i), C(i), E(i)), vi) | 0 ≤ i < |M|}
where L,C,E are defined as in Definition 2.

As shown by Chang and Lipson [2], subjecting a randomly
initialized neural network N to iterated self-application, i.e.,
computing N Cww N Cww ... Cww N , causes the network
to converge/diverge to trivial fixpoints N ∈ {0,+∞,−∞}.
Gabor et al. [3] have shown that subjecting randomly initial-
ized neural networks to self-training, i.e., computing N ww

N ww ... ww N Cww N , results in these networks becom-
ing (usually non-trivial) ε-fixpoints up to small ε ≤ 10−7.

A. Revisiting Additional Goals
To formalize the auxilary task (AT), we include the findings

of Gabor et al. [5] and adopt the procedure of their secondary
(auxiliary) goal interface. They append auxiliary goals of the
form f : R2 → R to networks for weightwise application for
a combined input format of N : R6 → R. Since in our case,
the auxiliary task will consist of multiplying one incoming
scalar, we can simply omit the second auxiliary position and
reuse this setting for our purpose. To reflect this change, we
will update the wording of relevant auxiliary task definitions,
briefly:

Definition 6 (replicative and auxiliary application): Given
neural networks M,N ,O : R5 → R with M = 〈vi〉0≤i<|M|.
Neural network O is the result of replicative application of
N for M, written O = N CrepM, iff

O = 〈N (vi, L(i), C(i), E(i), 0)〉0≤i<|M|
where L,C,E are defined as in Definition 2.

Given an input value x ∈ R, the output value y ∈ R is the
result of auxiliary application of input x, written y = N•auxX ,
iff

y = N (0, 0, 0, 0, x).

III. INTRODUCING THE ORGANISM NETWORK

Single networks of the structure described in the last subsec-
tion have proven to learn the ability to not only fulfil the SR-
property (cf. Definition 3), but also complete an auxilary task.
In recent experiments, while ‘living’ in the same environment
(interacting from time to time through well-defined operators
in the context of an artificial chemistry system), their ‘lives’
were focused on either learning only their individual SR-
function [8] or SR plus an additional auxilary task [5]. Those
individual ATs, even though being the same for all SR-
networks, are still only assigned to and learned by individual
SRNNs and do not construct any interactions (between the
individuals) or incentive to work together. In this work, we
now introduce the concept to learn a shared task (AT), for
which each SRNN plays its individual part. Our end-to-end
trainable architecture (in which the SRNNs are embedded) is
built to fulfil a global task, while enabling SRNNs to learn to
self-replicate. Inspired by the concept of biological organism,
we define a hierarchical structure named organism network
(ON) that is built from groups (cells) of individual SRNNs.
As we use a very specific interface for our implementation of
the SRNN, we also refer to them as particle networks (PNs).

The requirements are as follows: (1) The structure has to
work with the given PN interface so that the self-replication
property can still be achieved. (2) The individual particle
networks should still be able to interact with each other, hence
a common task interface. (3) In addition to that, all PNs’
auxilary task functions must work within a defined structure
so that the organism network as a whole can fulfil a higher
purpose.

To meet these requirements, we define the PNs’ auxilary
task (AT) (or goal) as the linear function of ‘multiply x
by a fixed value w’. Figure 1a depicts the PN and the
described SRNN interface (grey, green). While only exposing
the auxilary task input (green) by passing zero to the unused
self-application (SA) inputs, we can define unions of PNs
(Figure 1b) whose outputs are added up to form a single group
response. These unions which compute

∑0
i (PNi(Xi)) are

commonly known as cells in a neural network. In other words,
we propose a structured computational graph-architecture
(ON, Figure 1c) in which interconnected groups (cell (C),
Figure 1b) of individuals (PN, Figure 1a) are combined, so
that each PN then behaves like a cell’s weight in an NN.

Definition 7 (organism network): An organism net-
work (ON) is a neural network (NN) (cf. Definition 1)
whose edges are not populated by scalar weights El,c,e

but instead by particle networks Ml,c,e (as defined by
the PNs’ weight vectors Ml,c,e), i.e., w = ON =
〈Ml,c,e〉l=1,...,r,c=1,...,|Ll|,e=1,...,|Ll−1|.

A ON’s output provided an input x ∈ Rp is given via y =
ON (x) = 〈O′(r, c)〉c=1,...,|Lr| ∈ Rq where

O′(l, c) =

{
xc if l = 0,∑|Ll−1|

i=1 Ml,c,i(0, 0, 0, 0, O
′(l − 1, c)) otherwise.

Organism

(c)

Particle

(a)

Union

(b)

Fig. 1: Schematic overview of the ON architecture. (a) A
PN approximates a weight application (output y, small orange
box) for a given input value (x, green box), embedded in the
auxiliary task input format of Definition 6 (yellow boxes).
(b) A cell aggregates many predictions of the individual PNs
composing them (orange bar/vector) into one sum per union
(big orange box). (cc) The full ON (here: two inputs, three
hidden layers) finally invokes many cells, bundled layer-wise
as is common for deep NNs.

Given the already established research in the field of
SRNNs, this architecture (ON, Figure 1) can be trained end-
to-end as an arbitrary linear function approximator, while each
PN still fulfils its self-replication property.

Definition 8 (goal fulfilment): An organism network (ON)
of particle networksM1, ...,M|ON|1 has fulfilled its goal (up
to a precision of ε, ζ) iff
• all particle networks M1, ...,M|ON| are ε-fixpoints (cf.

Definition 3) and
• for all specified test data (x, y) the network’s output y′ =
ON (x) fulfils |y − y′| ≤ ζ.

Due to the given hierarchical order of ON, C, and PN, we
call the optimization toward the collaborative auxilary tasks
of PNs global — while both self-replication and ‘acting-as-a-
weight’ are considered local tasks.

IV. EXPERIMENT #1 — FLOAT ADDITION

To provide a proof-of-concept of the PNs indeed being
able to cooperate as individuals on a global auxilary task,
we start with a simple task: the addition of two floating point
precision numbers. This task has been shown to be learnable in
conjunction with SR for a single SRNN by Gabor et al. [5]. To
train towards the fulfilment of both the global AT and the local
SR task, we need to alternate the training schedule between
the two tasks.2

Using Stochastic Gradient Descent (SGD; lr = 0.004,
momentum = 0.9, epochs = 50) we train each PN 25 steps
of self-replication for each of the 20 batches in the primary

1For this definition we ignore the internal structure of the particle networks
in correspondence to the graph edges they are attached to.

2We also tried pre-training one or the other task first and then switching to
the other goal (respectively), but this has been shown to heavily disturb the
pre-trained weight configuration of the ON. We therefore train in alternating
fashion.

Fig. 2: Distribution of PNs types (PNSR (orange),
PNF (blue); Y-axis) composing the ON over the course of
training experiment #1, in epochs (X-axis).

(addition) task-dataset. Sufficient sizes for the PNs and ON
(w.r.t. cells & layers; (3,3), (3,2)) were determined empirically.

A. Performance, Stability, and Robustness

In accordance with Gabor et al. [3], [5] we tested the
particle networks (PNs) for self-replication (SR) properties
and studied their convergence and stability. Figure 2 shows
the timeline of all PNs within an organism network slowly
acquiring the SR-capability over the course of training.

Even through the variance of several runs, we can observe
both the local self-train loss and, shortly thereafter, the global
addition task loss reaching their best predictions within the
span of relative few epochs (cf. Figure 3). This speaks in
favor of a robust and stable training behaviour, which is not
surprising given the yet linear nature of the ON architecture.
With both averaged losses (self-replication and auxilary task)
well below the ε threshold, we consider all PNs as well as the
over-spanning ON as goal-networks according to Definition 8.

Regarding the robustness of the SR property, we borrow
the repeated self-application experiment conducted by Gabor
et al. [8] for our organism network (cf. Figure 2). We found
that, in comparison to both other studies, the PNs hold their
SR property for longer when applied to themselves (cf. Defini-
tion 2), some even under the influence of strong Gaussian noise
(> 10−5) on the initial inputs (cf. Figure 4). Interestingly, even
though the observed variance as well as the .95 confidence
interval span over a wide margin, the average robustness per
noise level is higher than shown for simple self-replicators,
even perfectly constructed ones (cf. Gabor et al. [8], Figure
3). Therefore, PNSR seem to be even stronger ε-fixpoint
generators than individually trained SRNNs.

B. Weight Re-Substitution

To check whether the trained particle networks (PNs) are
behaving like weights in an NN, we introduce a fixed input of
xONw

= (0, 0, 0, 0, 1), matching the organism interface. The
PNs’ output value, as the product of 1 times the weight-scalar
that the organism learned to represent (in a linear network),
represents the extracted weight value. We then replace a

Fig. 3: Mean squared error (MSE, left Y-axis) for both the
local SR-task-loss (orange) and the global add-task-loss (blue),
vs. the mean absolute error (MAE, right Y-axis) of the global
add-task-loss, for comparison, over the course of training (red)
and testing (green) (nseeds = 10, epochs = 60, X-axis).

Fig. 4: The robustness of PNs that did learn the SR-property
PNSR w.r.t. the weight-wise application Cww (cf. Defini-
tion 2). X-axis: Range of noise applied on the initial input.
Y-axis: Steps of self-application PNs keep their SR-property
w.r.t. ε = 10−5 (green); steps of self-application until the
network is regarded as diverged (blue).

conventional feed-forward NN of same size (w.r.t. number
of neurons and layers) of ON parameters with the extracted
weight values and calculate the absolute margin of error for
the classification task. This experiment shows that our ON of
approximated weight applications behaves like regular neural
networks (by a margin of error of ≤ 10−8) as shown in
Figure 5, but at a noticeable lower variance.

V. EXPERIMENT #2 — MNIST IMAGE CLASSIFICATION

After confirming the basic validity of the organism network
on the ‘float-addition’ task we now explore the possibility
of training a bigger network with image classification as the

Fig. 5: Absolute margin of error for the addition-task (Y-axis,
scaled at 1e-7; Definition 6) after replacing parameters in a
feed-forward NN of same size (w.r.t number of neurons and
layers) by learned weight application of t ∈ PN i

0 (cf. Def. 9)

global task. In this experiment, we intend to move the context
of self-replicating organisms (and SRNNs) closer to real-world
applications. As the training time and compute costs grow
quickly with additional input dimensions and each additional
PN, we decide in favour of a downsized variant for the scope
of this research. While there may be more optimized setups
in the future, we used a (15 × 15) pixel variant of MNIST
(cf. Deng [9]). This dataset consisting of 70, 000 images of
standardized handwritten numbers (30×30px) was considered
a standard deep-learning benchmark for several years. As
MNIST is much harder to learn than simple addition, we
prioritize the image classification task by adjusting the self-
train vs. global-task-train schedule to a 5:1 ratio. To enable
better organism network training, we also increase the model
width and the hidden layer depth to 3 (excluding the input and
output layers). Also, we introduce non-linearity in the form
of the Gaussian Error Linear Unit (GELU) [10] activation
function after every hidden layer. The optimizer setup remains
with the same parameters.

A. Performance, Stability, and Robustness

Figure 6 shows the losses of both tasks and the accuracies.
Testing was carried out on a withheld 10,000 sample test
set, as is convention (see Deng [9]). We observe the SR-loss
improving much faster than expected, with the classification
accuracy growing steadily to convergence. Although the results
may not be state-of-the-art precision, we deem a test accuracy
of > 0.8 on an (in effect) tiny network with no bias a decent
example of the ON’s capability.

When revisiting the test for robustness (cf. Figure 7) on
PNs trained on MNIST, we observe much lower levels of
robustness, which are comparable to findings in the established
literature. This contrasts our previous results and leads to the
assumption that, with longer training and regimes which are
more focused on the SR-task, very robust and stable self-
replicators are achievable.

Fig. 6: Losses (left X-axis) vs. accuracy (right Y-axis) for
both, the local SR-task (loss blue) and the global MNIST-
classification-task (loss orange) over the course of training
(red) and testing (green) (nseeds = 3, epochs = 200, X-axis).

After an in-depth hyperparameter search, we observed a
major drawback: Even though the SR-loss converged fast,
Figure 9 shows that just about a quarter of all PNs gained
the SR-property. This contrasts with our original assumption
because we had expected that all PN would achieve this
property.

Fig. 7: The robustness of PNs that did learn the SR-property
PNSR regarding the weight-wise application Cww (cf. Defi-
nition 2). X-axis: Range of noise applied on the initial input.
Y-axis: Steps of self-application PNs keep their SR property
with ε = 10−5 (green); Steps of self-application the network
was regarded as diverged (blue).

B. Specialist Dropout Test

As it is not possible for us to train all PNs to learn both
tasks at the same time, we decide to further investigate the
abilities of the PNs. We assume that training on MNIST is
more complex than our simple Experiment #1; PN (weights)

with less importance for the auxilary task gain the SR-
property PNSR earlier than the others PNF . To validate our
assumption, we construct a dropout test comparable to a ‘per-
weight-dropout’ (i.e., making an NN sparse by pruning), in
which we test the influence of both groups [PNSR, PNF] on
the task accuracy (cf. Definition 9). In other words, we want to
know how important a subset of weight positions is (defined
by its SR-property) for solving the overall group task.

Definition 9 (dropout organism network): Let ON be an
organism network, so that ON = 〈PN i〉i=1,...,|ON| is a
vector of particle networks PN i : R5 → R for i =
1, ..., |ON |. Let T : (R5 → R) → {PNSR, PNF } be a
labelling of all particle networks, with the implication that
any self-replicating particle network PN is labelled with
T (PN) = PN SR and any other particle network PN is
labelled with T (PN) = PNF . Let Z : R5 → R be
the zero network so that Z(, , , ,) = 0 for any input.
The dropout organism network ON ′ for ON w.r.t. type
t ∈ {PNSR, PNF } is given via ON = 〈D(i)〉i=1,...,|ON|

where D(i) =

{
Z if T (PN i) = t,

PN i otherwise.
Figure 8 depicts the accuracy after per-weight-dropout for

all groups of t ∈ {PNSR, PNF } compared to the whole
organism network. We observe that PNSR-dropout results in
almost no change in the measured test accuracy (> 0.001
accuracy), which is quite surprising considering that we dis-
able a sizable chunk of the network parameters. The other
way around, PNF -dropout disables the MNIST classification
immediately. This is the expected outcome, given the vast
proportion of PNF in the ON and their connectivity (cf.
Figure 11). In other words, PNs which are able to ‘specialise’
in self-replication are obviously not crucial for the group
task, which allows us to reduce the networks’ parameter size
by approx. 25%. However, we observe a slow but gradual
trend towards more self-replicators (PNSR) (cf. Figure 9),
suggesting insufficient training time so that clear convergence
may have simply yet to occur, which, we believe, is not
as likely, given the alternating training. Instead of blindly
training more epochs, we settle with this situation and analyse
it further.

Since MNIST allows for a visual exploration, we visu-
alise the positioning of self-replications with SR property.
Figure 10a represents the position of PNSR as ‘heatmap’,
while Figure 10b is a sum of the approx. weight values
(both w.r.t. x ∈ X each PN is attached to). We find it quite
interesting that even the PNSR which are not relevant for
the task keep on developing weight representations. Those
seem to then get ignored somewhere down the line. This
supports our assumption, that PNSR for themselves, ‘realise’
(presumably due to a small gradient) that they are assigned
to ‘non-important’ input vectors. For comparison, Figure 10c
visualises the per-pixel-mean of the test dataset. We clearly
see that replicator specialists (PNSR) are mostly responsible
for weight predictions of the empty parts of the image around
the edges. As MNIST comes with a lot of zero-values, we

Fig. 8: Accuracy (Y-axis) after per-weight-dropout for types
t ∈ {PNSR, PNF } compared to whole organism and ‘l1-
norm’ pruning (X-axis).

Fig. 9: Distribution of PN types (PNSR (orange), PNF (blue);
Y-axis) over the course of training the ON on experiment #2,
in epochs (X-axis). We observe an initial saturation in the
amount of PNSR, which then remains roughly stable over
the rest of training. We plot the variance over n = 5 runs with
a lighter color to show the consistency of this specialisation
development.

added Gaussian noise of magnitude 10−4 to each image. This
ensures that the observed behaviour is not simply the result of
PNs not being used at all for the AT.

Figure 11 visualises the network connectivity per PN-type.
This reveals a heavy distribution of PNSR in the input-
layer, but not solely. We assume that this positioning is the
direct result of ‘non-importance’ in input pixels. leading to
much faster convergence for PNs responsible for the image-
edge areas. This is quite interesting, as we tried to counter
the obvious ‘non-importance’ by adding Gaussian noise, as
previously described.

In the style of Gabor et al. [5], [8] we also take a look at
the PCA-transformed weight trajectories per PN-group of an
interesting model (cf. Figure 12). Along most of the networks
layers (we evaluated more than a single ON), we observe
that PNF weight trajectories quickly reach the specific region
of their PCA weight space. This is the expected behaviour.

(a) (b) (c)

Fig. 10: Heatmap representing the position of found PNSR.
(a) Per pixel count of PNSR over all PN in the first ON -
layer. Lighter colour represents more and darker colour fewer
PNSR responsible for this input. (b) Per-pixel-sum of the
‘equal-weight-value’ of PNSR overall PN in the first ON -
layer. (c) Per-pixel-mean of the MNIST dataset for comparison.
Here, lighter colour signifies higher values.

(a) (b)

Fig. 11: Connectivity per organism group: (a) PNs that have
learned the self-replication trait (PNSR, orange); (b) PNs that
have learned the global auxilary task (PNF , blue). (Layer #-1
= ON input vector.)

Trajectories of PNSR, in contrast, are mostly fitted along
a single axis by PCA (shared PCA space) (cf. Figure 12a;
layer = 2). This behaviour can also be observed with PNSR

in other networks/layers. Please note that we check for trivial
fixpoints (e.g., when all weights become zero). Like Gabor et
al. [3], we do not consider those ‘self-replicators’ in general
but zero-fixpoints. Due to over-plotting, we unfortunately did
not learn a lot from PCA trajectories of the heavily populated

(a) (b)

Fig. 12: PCA transformed weight-space trajectories (per PN-
group); here Layer 2 of the ON: (a) 8 PNSR that have gained
the self-replication-trait; (b) 42 PNF that have learned the
auxilary task. Every trajectory (unique colour), shows the
change in parameter-values of its corresponding PN.

first layer (15× 15× 5 PNs; cf. Figure 11).

VI. RELATED WORK

Self-replication as a field of research in the context of neural
networks receives increasing attention in the past few years.
Chang and Lipson [2] developed self-replicating NN quine,
which they reviewed on the full MNIST classification task.
In contrast to our findings, NN quines seem to lose their
‘incentive’ to receive or hold their SR ability. Our approach
in contrast follows the path of optimization to both (local and
global) intermixed tasks.

Randazzoo et al. [4] also established a procedure in which
they (through back-propagation (BP)) create initial conditions
that generate ‘fertile’ self-replicating agents. Training their SR
property is achieved by introducing a ‘sink-loss’ which targets
a noisy neighbour’s child (network configuration after SA)
rather than the network’s own weights, thereby encouraging
diverse network replication.

Embedding the replication task into larger structures has –
to the best of our knowledge – not been done before. However,
the idea of replacing neural nodes with small networks was
proposed by CCamp et al. [11], but they focus on the topic of
continual learning. Their deep artificial neurons (DANs) share
one meta-pretrained parameter set that minimizes a memory
loss (of previously seen linear regression tasks). Keeping these
pretrained parameters fixed, they try to learn (via BP) a weight
matrix, connecting the DANs. The focus of this approach is
set in favour of the malleability of these ‘vectorized synapses’
(i.e., synaptic plasticity), rather than on the neurons. This two-
weight-set approach is part of recent advances in continual
learning research, reserving different weight partitions for task
memory: Ba et al. [12], e.g., present the benefits of using 2
synaptic weight sets with novel ‘fast weights’ for improved
knowledge retention. More recently, Hurtado et al. [13] pro-
posed specific shared weights as a common knowledge base
between tasks. Our work, in contrast, does not check for the
memory of tasks or explicitly assign task positions, but rather
aims to train dual-purpose particles right from the start. We
also do not keep any part of the organism fixed, but we do
second the choice of utilizing small neuron particles, especially
since Beniaguev et al. [14] have shown that (even small) multi-
layer networks suffice in mimicking the functionality of real
cortical neurons.

The process of removing the PNSR from the trained ON
(cf. our post-training dropout test) is comparable to the concept
of selecting important network weights in the context of NN
pruning. For a broad overview, please refer to Blalock et
al. [15]. This is of interest as, on the one hand, modern network
architectures are assumed to be prone to over-parameterization
[16]. However, on the other hand, recent research suggests
that there are subsets of parameter configurations with (at
least) equal test accuracy (compared to the original network) in
any randomly initialized, dense neural network [17]. Locating
these excess parameters via specialisation in different tasks
as shown in this work could form the ‘natural-selection’

counterpart to simple value threshold pruning commonly in
use (e.g., see Zhu and Gupta [18]).

Our approach of utilizing small, randomly initialized net-
works in a larger meta-structure to predict connectivity re-
sults also shares similarity with the network kernel recently
introduced by Amid et al. [19], which returns the expected
inner-product of the network logits given some input samples.
Lin et al. [20] also employ a secondary ‘micro’ network
as a function approximator in-between layers, albeit focused
on a convolutional network architecture. We use a simple
architecture, as Tolstikhin et al. [21] have shown the sufficient
potency of multi-layer perceptron (MLP) architectures for
vision tasks.

Finally, with each of our organism network also training
themselves independently, we point to the Particle Swarm Op-
timization (PSO) algorithm (see Carvalho and Ludermir [22])
as conceptually related work, which changes and improves its
network parameters by iterating through fitness-based points
in solution space (particles).

VII. CONCLUSION AND FUTURE WORK

In this work, we built a cooperating organism network made
from cells of ‘self-replicators’ to introduce the field of SRNN-
research to real-world tasks and explore the findings along the
way. Our approach employs SRNN as weight approximators
for a greater computational graph (NN). We achieved our goal
in training the ON (which is made up of smaller groups of
particles) in an end-to-end fashion. We show a simple proof-
of-concept goal (float-number addition) as well as a non-trivial
task (MNIST image classification) to work respectably well.

On our way, we have found that the particles can become
robust goal-networks themselves, i.e., SRNNs performing both
self-replication and MNIST classification. This dual status
becomes harder to reach as PNs are utilised in more complex
group actions. For the image classification task, we see the
emergence of this dual-ability occurring primarily in particles
responsible for areas of low importance in the input, signaling
the ‘leisure’ to specialise into both tasks.

As PNs represent an approximation of the weight scalar, we
can deduct the weight value activating each particle, allowing
us to populate conventional feed-forward NN layers. When
pruning parameters on corresponding positions (to PNSR) of a
comparable NN we observe minimal test-accuracy loss, which
seems to outperform simple ‘l1-norm’ pruning. For the future,
it remains interesting to work on exploring further aspects of
learned self-regulation within the organism network, e.g., the
usage of particles as learned cell aggregators or layer activation
function approximators. Furthermore, operator-based interac-
tion between particles has to be further explored.

The option to scale up training and input dimensions for the
organism network is also a priority. As our networks stayed
relative simple w.r.t. to the architecture, function, and training
regime, there is a lot of methodology from the well-established
field of ‘deep learning’ that we did not touch yet. Other
directions for further research are a more in-depth examination
of the viability of different data-sets on the training ability

of the organisms. Although we have shown the importance-
selection to work also with a noisy rendition of MNIST, it
will be interesting to see the impact of RGB data without any
dead-spots (i.e., CIFAR10). We leave those considerations as
well as further tests and comparisons of mentioned pruning
strategies discussed in related work (repeated training, self-
pruning, fine-tuning) for the future.

REFERENCES

[1] S. A. Kauffman et al., The origins of order: Self-organization and
selection in evolution. Oxford University Press, USA, 1993.

[2] O. Chang and H. Lipson, “Neural network quine,” in Artificial Life
Conference Proceedings, MIT Press, 2018.

[3] T. Gabor, S. Illium, A. Mattausch, L. Belzner, and C. Linnhoff-Popien,
“Self-replication in neural networks,” in ALIFE 2019: The 2019 Con-
ference on Artificial Life, pp. 424–431, MIT Press, 2019.

[4] E. Randazzo, L. Versari, and A. Mordvintsev, “Recursively fertile self-
replicating neural agents,” in ALIFE 2021: The 2021 Conference on
Artificial Life, MIT Press, 2021.

[5] T. Gabor, S. Illium, M. Zorn, and C. Linnhoff-Popien, “Goals for self-
replicating neural networks,” in ALIFE 2021: The 2021 Conference on
Artificial Life, MIT Press, 2021.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–44, 05 2015.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–
536, 1986.

[8] T. Gabor, S. Illium, M. Zorn, C. Lenta, A. Mattausch, L. Belzner, and
C. Linnhoff-Popien, “Self-Replication in Neural Networks,” Artificial
Life, pp. 205–223, 06 2022.

[9] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[10] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[11] B. Camp, J. K. Mandivarapu, and R. Estrada, “Continual learning with
deep artificial neurons,” arXiv preprint arXiv:2011.07035, 2020.

[12] J. Ba, G. E. Hinton, V. Mnih, J. Z. Leibo, and C. Ionescu, “Using fast
weights to attend to the recent past,” Advances in neural information
processing systems, vol. 29, 2016.

[13] J. Hurtado, A. Raymond, and A. Soto, “Optimizing reusable knowledge
for continual learning via metalearning,” Advances in Neural Informa-
tion Processing Systems, vol. 34, pp. 14150–14162, 2021.

[14] D. Beniaguev, I. Segev, and M. London, “Single cortical neurons as
deep artificial neural networks,” Neuron, vol. 109, no. 17, pp. 2727–
2739, 2021.

[15] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?,” Proceedings of machine learning and
systems, vol. 2, pp. 129–146, 2020.

[16] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, “Pre-
dicting parameters in deep learning,” Advances in neural information
processing systems, vol. 26, 2013.

[17] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[18] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[19] E. Amid, R. Anil, W. Kotłowski, and M. K. Warmuth, “Learning
from randomly initialized neural network features,” arXiv preprint
arXiv:2202.06438, 2022.

[20] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[21] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai,
T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, et al.,
“Mlp-mixer: An all-mlp architecture for vision,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[22] M. Carvalho and T. B. Ludermir, “Particle swarm optimization of neural
network architectures and weights,” in 7th International Conference on
Hybrid Intelligent Systems (HIS 2007), pp. 336–339, IEEE, 2007.

	I Introduction
	II Self-Replicating Networks
	II-A Revisiting Additional Goals

	III Introducing the Organism Network
	IV Experiment #1 — Float Addition
	IV-A Performance, Stability, and Robustness
	IV-B Weight Re-Substitution

	V Experiment #2 — MNIST Image Classification
	V-A Performance, Stability, and Robustness
	V-B Specialist Dropout Test

	VI Related Work
	VII Conclusion and Future Work
	References

