projects and literature
This commit is contained in:
@ -10,3 +10,34 @@ header:
|
||||
---
|
||||
|
||||
{: .align-left style="padding:0.1em; width:5em"}
|
||||
|
||||
In cooperation with the Munich City Services ([Stadtwerke München (SWM)](https://www.swm.de/)), we researched the possibilities of leakage detection in real-world water networks.
|
||||
Therefore, we installed contact microphones directly on the infrastructure in one of Munich's suburbs. {% cite muller2021acoustic%}
|
||||
|
||||
<center>
|
||||
<figure class="half" style="max-width: 70%; text-align:center;">
|
||||
|
||||
<img src="\assets\images\projects\pipe_leak\1fe8265e-ff21-4e9c-8a2a-2ebcaec41728.jpeg" style="margin-bottom: 0em;">
|
||||
|
||||
<img src="\assets\images\projects\pipe_leak\8d2364f1-1b03-480d-9ed3-09d548f47383.jpeg" style="margin-bottom: 0em;">
|
||||
|
||||
</figure>
|
||||
</center><br>
|
||||
|
||||
The feasibility study revealed the technical limitations of this undertaking. Nonetheless, we gain valuable insights. Through audio-to-mel spectrogram transformations and the power of machine learning, deep neural networks (conv. and recurrent) are more capable of extracting important features for the given task than classic ML approaches.
|
||||
In this context, our team was able to produce further publications. {% cite elsner2019deep illium2020surgical muller2020analysis illium2022empirical%}
|
||||
|
||||
|
||||
<center>
|
||||
<figure class="half" style="max-width: 70%; text-align:center;">
|
||||
|
||||
<img src="\assets\images\projects\pipe_leak\5ea8f0ee-6c61-4835-944c-b77683d397ca.jpeg" style="margin-bottom: 0em;">
|
||||
|
||||
<img src="\assets\images\projects\pipe_leak\cc01cc58-d3f6-4220-b4f4-c7ea26b3a116.jpeg" style="margin-bottom: 0em;">
|
||||
|
||||
</figure>
|
||||
</center><br>
|
||||
|
||||
This project ran from late 2018 until the early months of 2020.
|
||||
|
||||
{% include reference.html %}
|
||||
|
Reference in New Issue
Block a user