70 lines
2.6 KiB
Python
70 lines
2.6 KiB
Python
import random
|
|
import copy
|
|
|
|
from experiment import *
|
|
from network import *
|
|
|
|
def prng():
|
|
return random.random()
|
|
|
|
class Soup:
|
|
|
|
def __init__(self, size, generator, **kwargs):
|
|
self.size = size
|
|
self.generator = generator
|
|
self.particles = []
|
|
self.params = dict(meeting_rate=0.1)
|
|
self.params.update(kwargs)
|
|
|
|
def with_params(self, **kwargs):
|
|
self.params.update(kwargs)
|
|
return self
|
|
|
|
def seed(self):
|
|
self.particles = []
|
|
for _ in range(self.size):
|
|
self.particles += [self.generator()]
|
|
return self
|
|
|
|
def evolve(self, iterations=1):
|
|
for _ in range(iterations):
|
|
for particle_id,particle in enumerate(self.particles):
|
|
if prng() < self.params.get('meeting_rate'):
|
|
other_particle_id = int(prng() * len(self.particles))
|
|
other_particle = self.particles[other_particle_id]
|
|
particle.attack(other_particle)
|
|
if self.params.get('remove_divergent') and particle.is_diverged():
|
|
self.particles[particle_id] = self.generator()
|
|
if self.params.get('remove_zero') and particle.is_zero():
|
|
self.particles[particle_id] = self.generator()
|
|
|
|
|
|
def count(self):
|
|
counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
|
for particle in self.particles:
|
|
if particle.is_diverged():
|
|
counters['divergent'] += 1
|
|
elif particle.is_fixpoint():
|
|
if particle.is_zero():
|
|
counters['fix_zero'] += 1
|
|
else:
|
|
counters['fix_other'] += 1
|
|
elif particle.is_fixpoint(2):
|
|
counters['fix_sec'] += 1
|
|
else:
|
|
counters['other'] += 1
|
|
return counters
|
|
|
|
|
|
if __name__ == '__main__':
|
|
with SoupExperiment() as exp:
|
|
for run_id in range(1):
|
|
net_generator = lambda: WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='sigmoid').with_params()
|
|
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
|
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
|
soup = Soup(100, net_generator).with_params(remove_divergent=True, remove_zero=True)
|
|
soup.seed()
|
|
for _ in tqdm(range(100)):
|
|
soup.evolve()
|
|
exp.log(soup.count())
|