self-replicating-neural-net.../experiments/self_train_secondary_exp.py
2021-08-24 10:35:29 +02:00

115 lines
4.3 KiB
Python

import pickle
from pathlib import Path
from tqdm import tqdm
from experiments.helpers import check_folder, summary_fixpoint_experiment
from functionalities_test import test_for_fixpoints
from network import SecondaryNet
from visualization import plot_loss, bar_chart_fixpoints
from visualization import plot_3d_self_train
class SelfTrainExperimentSecondary:
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
epochs, directory: Path) -> None:
self.population_size = population_size
self.log_step_size = log_step_size
self.net_input_size = net_input_size
self.net_hidden_size = net_hidden_size
self.net_out_size = net_out_size
self.net_learning_rate = net_learning_rate
self.epochs = epochs
self.loss_history = []
self.fixpoint_counters = {
"identity_func": 0,
"divergent": 0,
"fix_zero": 0,
"fix_weak": 0,
"fix_sec": 0,
"other_func": 0
}
self.directory_name = Path(directory)
self.directory_name.mkdir(parents=True, exist_ok=True)
self.nets = []
# Create population:
self.populate_environment()
self.weights_evolution_3d_experiment()
self.count_fixpoints()
self.visualize_loss()
def populate_environment(self):
loop_population_size = tqdm(range(self.population_size))
for i in loop_population_size:
loop_population_size.set_description("Populating ST experiment %s" % i)
net_name = f"ST_net_{str(i)}"
net = SecondaryNet(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
for _ in range(self.epochs):
net.self_train(1, self.log_step_size, self.net_learning_rate)
print(f"\nLast weight matrix (epoch: {self.epochs}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
self.nets.append(net)
def weights_evolution_3d_experiment(self):
exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA"
return plot_3d_self_train(self.nets, exp_name, self.directory_name, self.log_step_size)
def count_fixpoints(self):
test_for_fixpoints(self.fixpoint_counters, self.nets)
exp_details = f"Self-train for {self.epochs} epochs"
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
exp_details)
def visualize_loss(self):
for i in range(len(self.nets)):
net_loss_history = self.nets[i].loss_history
self.loss_history.append(net_loss_history)
plot_loss(self.loss_history, self.directory_name)
def run_ST_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
epochs, runs, run_name, name_hash):
experiments = {}
logging_directory = Path('output') / 'self_training'
logging_directory.mkdir(parents=True, exist_ok=True)
# Running the experiments
for i in range(runs):
experiment_name = f"{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
this_exp_directory = logging_directory / experiment_name
ST_experiment = SelfTrainExperimentSecondary(
population_size,
batch_size,
net_input_size,
net_hidden_size,
net_out_size,
net_learning_rate,
epochs,
this_exp_directory
)
with (this_exp_directory / 'full_experiment_pickle.p').open('wb') as f:
pickle.dump(ST_experiment, f)
experiments[i] = ST_experiment
# Building a summary of all the runs
summary_name = f"/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
summary_directory_name = logging_directory / summary_name
summary_directory_name.mkdir(parents=True, exist_ok=True)
summary_pre_title = "ST"
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, summary_directory_name,
summary_pre_title)
if __name__ == '__main__':
raise NotImplementedError('Test this here!!!')