
- Reformated net.self_x functions (sa, st) - corrected robustness_exp.py - NO DEBUGGING DONE!!!!!
121 lines
4.5 KiB
Python
121 lines
4.5 KiB
Python
import os.path
|
|
import pickle
|
|
|
|
from tqdm import tqdm
|
|
|
|
from experiments.helpers import check_folder, summary_fixpoint_experiment
|
|
from functionalities_test import test_for_fixpoints
|
|
from network import Net
|
|
from visualization import bar_chart_fixpoints
|
|
from visualization import plot_3d_self_application
|
|
|
|
|
|
class SelfApplicationExperiment:
|
|
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size,
|
|
net_learning_rate, application_steps, train_nets, directory_name, training_steps
|
|
) -> None:
|
|
self.population_size = population_size
|
|
self.log_step_size = log_step_size
|
|
self.net_input_size = net_input_size
|
|
self.net_hidden_size = net_hidden_size
|
|
self.net_out_size = net_out_size
|
|
|
|
self.net_learning_rate = net_learning_rate
|
|
self.SA_steps = application_steps #
|
|
|
|
self.train_nets = train_nets
|
|
self.ST_steps = training_steps
|
|
|
|
self.directory_name = directory_name
|
|
os.mkdir(self.directory_name)
|
|
|
|
""" Creating the nets & making the SA steps & (maybe) also training the networks. """
|
|
self.nets = []
|
|
# Create population:
|
|
self.populate_environment()
|
|
|
|
self.fixpoint_counters = {
|
|
"identity_func": 0,
|
|
"divergent": 0,
|
|
"fix_zero": 0,
|
|
"fix_weak": 0,
|
|
"fix_sec": 0,
|
|
"other_func": 0
|
|
}
|
|
|
|
self.weights_evolution_3d_experiment()
|
|
self.count_fixpoints()
|
|
|
|
def populate_environment(self):
|
|
loop_population_size = tqdm(range(self.population_size))
|
|
for i in loop_population_size:
|
|
loop_population_size.set_description("Populating SA experiment %s" % i)
|
|
|
|
net_name = f"SA_net_{str(i)}"
|
|
|
|
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name
|
|
)
|
|
for _ in range(self.SA_steps):
|
|
input_data = net.input_weight_matrix()
|
|
target_data = net.create_target_weights(input_data)
|
|
|
|
if self.train_nets == "before_SA":
|
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
net.self_application(self.SA_steps, self.log_step_size)
|
|
elif self.train_nets == "after_SA":
|
|
net.self_application(self.SA_steps, self.log_step_size)
|
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
else:
|
|
net.self_application(self.SA_steps, self.log_step_size)
|
|
|
|
self.nets.append(net)
|
|
|
|
def weights_evolution_3d_experiment(self):
|
|
exp_name = f"SA_{str(len(self.nets))}_nets_3d_weights_PCA"
|
|
plot_3d_self_application(self.nets, exp_name, self.directory_name, self.log_step_size)
|
|
|
|
def count_fixpoints(self):
|
|
test_for_fixpoints(self.fixpoint_counters, self.nets)
|
|
exp_details = f"{self.SA_steps} SA steps"
|
|
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
|
exp_details)
|
|
|
|
|
|
def run_SA_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size,
|
|
net_learning_rate, runs, run_name, name_hash, application_steps, train_nets, training_steps):
|
|
experiments = {}
|
|
|
|
check_folder("self_application")
|
|
|
|
# Running the experiments
|
|
for i in range(runs):
|
|
directory_name = f"experiments/self_application/{run_name}_run_{i}_{str(population_size)}_nets_{application_steps}_SA_{str(name_hash)}"
|
|
|
|
SA_experiment = SelfApplicationExperiment(
|
|
population_size,
|
|
batch_size,
|
|
net_input_size,
|
|
net_hidden_size,
|
|
net_out_size,
|
|
net_learning_rate,
|
|
application_steps,
|
|
train_nets,
|
|
directory_name,
|
|
training_steps
|
|
)
|
|
pickle.dump(SA_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
|
|
experiments[i] = SA_experiment
|
|
|
|
# Building a summary of all the runs
|
|
directory_name = f"experiments/self_application/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{application_steps}_SA_{str(name_hash)}"
|
|
os.mkdir(directory_name)
|
|
|
|
summary_pre_title = "SA"
|
|
summary_fixpoint_experiment(runs, population_size, application_steps, experiments, net_learning_rate,
|
|
directory_name,
|
|
summary_pre_title)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
raise NotImplementedError('Test this here!!!')
|