self-replicating-neural-net.../minimal_net_search.py

85 lines
3.7 KiB
Python

from tqdm import tqdm
import pandas as pd
from pathlib import Path
import torch
import torch.nn as nn
from torch.nn import Flatten
from torch.utils.data import Dataset, DataLoader
from torchvision.datasets import MNIST, CIFAR10
from torchvision.transforms import ToTensor, Compose, Resize, Normalize, Grayscale
import torchmetrics
import pickle
from network import MetaNetCompareBaseline
WORKER = 0
BATCHSIZE = 500
EPOCH = 10
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MNIST_TRANSFORM = Compose([ Resize((10, 10)), ToTensor(), Normalize((0.1307,), (0.3081,)), Flatten(start_dim=0)])
CIFAR10_TRANSFORM = Compose([ Grayscale(num_output_channels=1), Resize((10, 10)), ToTensor(), Normalize((0.48,), (0.25,)), Flatten(start_dim=0)])
def train_and_test(testnet, optimizer, loss, trainset, testset):
d_train = DataLoader(trainset, batch_size=BATCHSIZE, shuffle=False, drop_last=True, num_workers=WORKER)
d_test = DataLoader(testset, batch_size=BATCHSIZE, shuffle=False, drop_last=True, num_workers=WORKER)
# train
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epoch'):
for batch, (batch_x, batch_y) in enumerate(d_train):
optimizer.zero_grad()
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
y = testnet(batch_x)
loss = loss_fn(y, batch_y)
loss.backward()
optimizer.step()
# test
testnet.eval()
metric = torchmetrics.Accuracy()
with tqdm(desc='Test Batch: ') as pbar:
for batch, (batch_x, batch_y) in tqdm(enumerate(d_test), total=len(d_test), desc='MetaNet Test - Batch'):
y = testnet(batch_x)
loss = loss_fn(y, batch_y)
acc = metric(y.cpu(), batch_y.cpu())
pbar.set_postfix_str(f'Acc: {acc}')
pbar.update()
acc = metric.compute()
tqdm.write(f"Avg. accuracy on all data: {acc}")
return acc
if __name__ == '__main__':
torch.manual_seed(42)
data_path = Path('data')
data_path.mkdir(exist_ok=True, parents=True)
mnist_train = MNIST(str(data_path), transform=MNIST_TRANSFORM, download=True, train=True)
mnist_test = MNIST(str(data_path), transform=MNIST_TRANSFORM, download=True, train=False)
cifar10_train = CIFAR10(str(data_path), transform=CIFAR10_TRANSFORM, download=True, train=True)
cifar10_test = CIFAR10(str(data_path), transform=CIFAR10_TRANSFORM, download=True, train=False)
loss_fn = nn.CrossEntropyLoss()
frame = pd.DataFrame(columns=['Dataset', 'Neurons', 'Layers', 'Parameters', 'Accuracy'])
for name, trainset, testset in [("MNIST",mnist_train,mnist_test), ("CIFAR10",cifar10_train,cifar10_test)]:
best_acc = 0
neuron_count = 0
layer_count = 0
# find upper bound (in steps of 10, neurons/layer > 200 will start back from 10 with layers+1)
while best_acc <= 0.95:
neuron_count += 10
if neuron_count >= 210:
neuron_count = 10
layer_count += 1
net = MetaNetCompareBaseline(100, layer_count, neuron_count, out=10)
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
acc = train_and_test(net, optimizer, loss_fn, trainset, testset)
if acc > best_acc:
best_acc = acc
num_params = sum(p.numel() for p in net._meta_layer_list.parameters())
frame.loc[frame.shape[0]] = dict(Dataset=name, Neurons=neuron_count, Layers=layer_count, Parameters=num_params, Accuracy=acc)
print(f"> {name}\t| {neuron_count} neurons\t| {layer_count} h.-layer(s)\t| {num_params} params\n")
print(frame)
pickle.dump(frame, "min_net_search_df.pkl")