118 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			118 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os.path
 | |
| import pickle
 | |
| from pathlib import Path
 | |
| 
 | |
| from tqdm import tqdm
 | |
| 
 | |
| from experiments.helpers import check_folder, summary_fixpoint_experiment
 | |
| from functionalities_test import test_for_fixpoints
 | |
| from network import Net
 | |
| from visualization import plot_loss, bar_chart_fixpoints
 | |
| from visualization import plot_3d_self_train
 | |
| 
 | |
| 
 | |
| 
 | |
| class SelfTrainExperiment:
 | |
|     def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
 | |
|                  epochs, directory_name) -> None:
 | |
|         self.population_size = population_size
 | |
|         self.log_step_size = log_step_size
 | |
|         self.net_input_size = net_input_size
 | |
|         self.net_hidden_size = net_hidden_size
 | |
|         self.net_out_size = net_out_size
 | |
| 
 | |
|         self.net_learning_rate = net_learning_rate
 | |
|         self.epochs = epochs
 | |
| 
 | |
|         self.loss_history = []
 | |
| 
 | |
|         self.fixpoint_counters = {
 | |
|             "identity_func": 0,
 | |
|             "divergent": 0,
 | |
|             "fix_zero": 0,
 | |
|             "fix_weak": 0,
 | |
|             "fix_sec": 0,
 | |
|             "other_func": 0
 | |
|         }
 | |
| 
 | |
|         self.directory_name = directory_name
 | |
|         os.mkdir(self.directory_name)
 | |
| 
 | |
|         self.nets = []
 | |
|         # Create population:
 | |
|         self.populate_environment()
 | |
| 
 | |
|         self.weights_evolution_3d_experiment()
 | |
|         self.count_fixpoints()
 | |
|         self.visualize_loss()
 | |
| 
 | |
|     def populate_environment(self):
 | |
|         loop_population_size = tqdm(range(self.population_size))
 | |
|         for i in loop_population_size:
 | |
|             loop_population_size.set_description("Populating ST experiment %s" % i)
 | |
| 
 | |
|             net_name = f"ST_net_{str(i)}"
 | |
|             net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
 | |
| 
 | |
|             for _ in range(self.epochs):
 | |
|               input_data = net.input_weight_matrix()
 | |
|               target_data = net.create_target_weights(input_data)
 | |
|               net.self_train(1, self.log_step_size, self.net_learning_rate)
 | |
| 
 | |
|             print(f"\nLast weight matrix (epoch: {self.epochs}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
 | |
|             self.nets.append(net)
 | |
| 
 | |
|     def weights_evolution_3d_experiment(self):
 | |
|         exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA"
 | |
|         return plot_3d_self_train(self.nets, exp_name, self.directory_name, self.log_step_size)
 | |
| 
 | |
|     def count_fixpoints(self):
 | |
|         test_for_fixpoints(self.fixpoint_counters, self.nets)
 | |
|         exp_details = f"Self-train for {self.epochs} epochs"
 | |
|         bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
 | |
|                             exp_details)
 | |
| 
 | |
|     def visualize_loss(self):
 | |
|         for i in range(len(self.nets)):
 | |
|             net_loss_history = self.nets[i].loss_history
 | |
|             self.loss_history.append(net_loss_history)
 | |
| 
 | |
|         plot_loss(self.loss_history, self.directory_name)
 | |
| 
 | |
| 
 | |
| def run_ST_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
 | |
|                       epochs, runs, run_name, name_hash):
 | |
|     experiments = {}
 | |
|     logging_directory = Path('output') / 'self_training'
 | |
|     logging_directory.mkdir(parents=True, exist_ok=True)
 | |
| 
 | |
|     # Running the experiments
 | |
|     for i in range(runs):
 | |
|         experiment_name = f"{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
 | |
|         this_exp_directory = logging_directory / experiment_name
 | |
|         ST_experiment = SelfTrainExperiment(
 | |
|             population_size,
 | |
|             batch_size,
 | |
|             net_input_size,
 | |
|             net_hidden_size,
 | |
|             net_out_size,
 | |
|             net_learning_rate,
 | |
|             epochs,
 | |
|             this_exp_directory
 | |
|         )
 | |
|         with (this_exp_directory / 'full_experiment_pickle.p').open('wb') as f:
 | |
|             pickle.dump(ST_experiment, f)
 | |
|         experiments[i] = ST_experiment
 | |
| 
 | |
|     # Building a summary of all the runs
 | |
|     summary_name = f"/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
 | |
|     summary_directory_name = logging_directory / summary_name
 | |
|     summary_directory_name.mkdir(parents=True, exist_ok=True)
 | |
| 
 | |
|     summary_pre_title = "ST"
 | |
|     summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, summary_directory_name,
 | |
|                                 summary_pre_title)
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     raise NotImplementedError('Test this here!!!')
 | 
